一、测试理论与流程夯实
- 系统梳理:每周安排 3 - 4 小时,深入研读软件测试的艺术、Google 软件测试之道,重点强化功能、性能、安全性测试流程,整理流程关键节点与执行要点笔记 。
- 实践模拟:基于线上开源项目(如 GitHub 找小型 Web 应用),每月开展 2 次全流程测试实践,从需求分析到测试报告输出,巩固理论应用。
二、Python 及测试工具深化
- Python 进阶:利用Python 高级课程资料,主攻面向对象编程、装饰器、并发编程等,每周投入 5 小时学习,完成课程代码实操。
- 测试工具与框架:学习 Selenium、Appium(移动端测试)、Pytest、Unittest ,先通过文档了解基础,再结合实战项目,搭建接口自动化测试框架,每周实践 2 - 3 小时,逐步实现独立编写、维护自动化测试框架。
三、工程化工具掌握
- Git:通过Git 教程系统学习,日常代码管理用 Git,掌握分支管理、版本回退等,每周实操 1 - 2 次代码提交、合并流程。
- CI/CD 与缺陷管理:部署 Jenkins 环境,搭建简单 CI/CD 流水线,结合实际项目(如 Python 测试脚本持续集成),了解 DevOps 理念。同时,用 JIRA 管理测试缺陷,熟悉缺陷全生命周期流程,每月实践 1 个完整项目流程 。
四、虚拟化与系统、数据库学习
- Docker:跟随 Docker 官方文档教程,学习镜像制作、容器编排,每周完成 1 个 Python 测试环境容器化部署实践,掌握 Docker Compose 搭建多服务测试环境。
- Linux 与数据库:Linux 方面,通过学习常用命令、服务配置,每周实操 2 小时;数据库学习 Pgsql,MySQL掌握数据操作、索引优化,结合测试场景(如模拟高并发数据写入测试),每月开展 1 次数据库测试实践 。
五、软技能与加分项突破
- 加分项攻坚:备考软件测试认证(如 ISTQB),每天抽 1 - 2 小时学习备考资料;尝试从 0 到 1 搭建自动化测试框架(如针对接口测试,设计分层架构框架),带领小团队(可拉同学、同事)实践,积累团队管理与框架开发经验 。
六、学习资料
- Python入门与实战
- Python Flask构建微信小程序
- Python IDEA开发
- Python计算机视觉
- Python爬虫开发APP
- Python网络并发编程
- Python数据科学入门
- Python全栈开发
- Python人工智能就业班
- Python基础+数据分析
- Python分布式爬虫课程
- Python高级语言程序设计
- Python高效编程技巧
- Python零基础入门学习
- Python趣味AI项目
- Python企业级全技术栈开发
- Python全栈开发
https://m.tb.cn/h.hVPw5na?tk=VKjtVDttoPQ