Python——FastAPI

FastAPI 是一个现代、快速(高性能)的 Python Web 框架,基于标准 Python 类型提示,专为构建 API 设计。它的主要特点是快速开发、高性能、使用类型提示自动生成文档,以及对异步操作的支持。

1. 安装 FastAPI 和 Uvicorn

在开始使用 FastAPI 之前,你需要安装 FastAPI 和 ASGI 服务器(如 Uvicorn)来运行它。

pip install fastapi uvicorn

2. 创建一个简单的 FastAPI 应用

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
def read_root():
    return {
   
   "Hello": "World"}

说明:

  • FastAPI():创建一个 FastAPI 应用实例。
  • @app.get("/"):这是一个路径操作装饰器,用于声明 HTTP GET 请求的路径(在这个例子中是根路径/)。
  • read_root:路径操作函数,当访问 / 时,会返回一个包含 "Hello": "World" 的 JSON 响应。

3. 运行应用

使用 Uvicorn 运行你的应用:

uvicorn main:app --reload
  • main:appmain 是你的 Python 文件名(不带 .py 后缀),app 是 FastAPI 实例。
  • --reload:启用自动重新加载功能,当代码更改时自动重启服务器。

4. 请求方法示例

FastAPI 支持多种 HTTP 方法,如 GETPOSTPUTDELETE 等。下面是不同方法的示例。

4.1. GET 请求
@app.get("/items/{item_id}")
def read_item(item_id: int, q: str = None):
    return {
   
   "item_id": item_id, "q": q}

说明:

  • item_id: int:路径参数,要求为整数类型。
  • q: str = None:查询参数,可选,默认为 None
4.2. POST 请求
from pydantic import BaseModel

class Item(BaseModel):
    name: 
### 使用PythonFastAPI构建Web应用程序 #### 安装FastAPI及其依赖项 为了开始使用FastAPI创建Web应用程序,首先需要安装FastAPI以及ASGI服务器Uvicorn。可以利用`pip`工具来进行安装: ```bash pip install fastapi uvicorn[standard] ``` 或者按照推荐的方式,通过`python -m pip install`来确保命令执行的准确性与可靠性[^3]。 对于更复杂的项目管理需求,还可以考虑使用Poetry这样的包管理和环境隔离工具,并添加必要的扩展包如`python-dotenv`以便于读取环境变量设置[^4]。 #### 创建基础的应用实例 一旦完成上述准备工作之后,就可以着手编写第一个简单的FastAPI程序了。下面给出了一段最简化的代码片段作为入门示例: ```python from fastapi import FastAPI app = FastAPI() @app.get("/") async def root(): return {"message": "Hello World"} ``` 这段代码定义了一个名为`root()`异步函数,在接收到HTTP GET请求访问根路径(`"/"`)时返回JSON格式的消息对象{"message":"Hello World"}给客户端。 #### 路由操作与参数传递 除了最基本的GET方法之外,FastAPI还支持POST、PUT等多种标准HTTP动词;同时也允许开发者轻松地实现URL动态部分解析、查询字符串获取等功能。例如,可以通过如下方式接收并处理来自用户的输入数据: ```python from pydantic import BaseModel class Item(BaseModel): name: str description: str | None = None price: float tax: float | None = None @app.post("/items/") async def create_item(item: Item): item_dict = item.dict() if item.tax: price_with_tax = item.price + item.tax item_dict.update({"price_with_tax": price_with_tax}) return item_dict ``` 这里引入了Pydantic模型类`Item`用于验证传入的数据结构是否合法合规,从而提高了系统的健壮性和安全性。 #### 数据库集成方案 随着业务逻辑的增长复杂化,通常还需要接入持久化存储机制——即连接外部关系型/非关系型数据库保存重要资料。借助SQLAlchemy ORM层或是Motor驱动MongoDB等方式都可以很好地满足这一诉求。具体实施细节取决于实际应用场景和技术选型偏好等因素影响。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pumpkin84514

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值