文章目录
n阶行列式定义
设
A
=
(
a
i
j
)
A =(a_{ij})
A=(aij)是一个
n
n
n阶方阵,则所谓
A
A
A的行列式或
n
n
n阶行列式。指由
A
A
A确定一个数,记为
∣
A
∣
(
或
记
为
d
e
t
A
)
|A| (或记为det A )
∣A∣(或记为detA),这个数由下式来确定:
∣
A
∣
=
∑
(
i
1
,
.
.
.
,
i
n
)
∈
s
n
(
−
1
)
τ
(
i
1
,
.
.
.
,
i
n
)
a
1
i
1
a
2
i
2
.
.
.
a
n
i
n
|A|\ =\ \sum_{\left( i_1,...,i_n \right) \in s_n}{\left( -1 \right) ^{\tau \left( i_1,...,i_n \right)}a_{1i_1}a_{2i_2}...a_{ni_n}}
∣A∣ = (i1,...,in)∈sn∑(−1)τ(i1,...,in)a1i1a2i2...anin
具体来说:
- n n n阶行列式定义展开式中共有 n ! n! n!项。
- 右边每一项都是 n n n个数相乘, a 1 i 1 , a 2 i 2 , . . . , a n i n a_{1i_1},a_{2i_2},...,a_{ni_n} a1i1,a2i2,...,anin,这 n n n个元素分别来自 A A A的不同行不同列。
- ( i 1 , . . . , i n ) ∈ s n \left( i_1,...,i_n \right) \in s_n (i1,...,in)∈sn, s n s_n sn是 1 , 2 , 3 , . . . , n 1,2,3,...,n 1,2,3,...,n的全排列的集合。
- ( − 1 ) τ ( i 1 , . . . , i n ) \left( -1 \right) ^{\tau \left( i_1,...,i_n \right)} (−1)τ(i1,...,in)是 a 1 i 1 a 2 i 2 . . . a n i n a_{1i_1}a_{2i_2}...a_{ni_n} a1i1a2i2...anin的系数,其中列指标排列 ( i 1 , . . . , i n ) \left( i_1,...,i_n \right) (i1,...,in)的奇偶性决定该项所带的符号(正或者负)。
排列
n
n
n个数
1
,
2
,
3
,
.
.
.
,
n
1,2,3,...,n
1,2,3,...,n排列成一个有序
n
n
n元数组称为一个
n
n
n元排列。
注:
- 自然排列: 1 , 2 , 3 , . . . , n 1,2,3,...,n 1,2,3,...,n
- 1 , 3 , 2 , 4 和 4 , 2 , 1 , 3 1,3,2,4和4,2,1,3 1,3,2,4和4,2,1,3都是4元排列,但 3 , 2 , 1 , 3 3,2,1,3 3,2,1,3不是4元排列。
逆序、逆序数定义
在一个排列
中,如果一对数的前后位置与大小顺序相反
,即前面的数大于后面的数
,则称这对数为一个逆序;一个排列中逆序的总数
称为这个排列的逆序数。
如果记
τ
(
p
i
)
\tau(p_i)
τ(pi)为在排列
(
p
1
,
.
.
.
,
p
n
)
\left( p_1,...,p_n \right)
(p1,...,pn)中,排在
p
i
p_i
pi左边但大于
p
i
p_i
pi的数的个数,
τ
(
p
1
,
.
.
.
,
p
n
)
=
∑
i
=
1
n
τ
(
p
i
)
\tau \left( p_1,...,p_n \right) = \sum_{i=1}^n{\tau(p_i)}
τ(p1,...,pn)=i=1∑nτ(pi)
例子一
求排列3,2,1,4
和4,5,1,3,6,2
的逆序数。
τ
(
3
,
2
,
1
,
4
)
=
0
+
1
+
2
+
0
=
3
\tau(3,2,1,4) = 0+1+2+0 = 3
τ(3,2,1,4)=0+1+2+0=3
则该排列逆序数为3.
τ
(
4
,
5
,
1
,
3
,
6
,
2
)
=
0
+
0
+
2
+
2
+
0
+
4
=
8
\tau(4,5,1,3,6,2) = 0+0+2+2+0+4 = 8
τ(4,5,1,3,6,2)=0+0+2+2+0+4=8
则该排列逆序数为8.
奇排列、偶排列
逆序数
为奇数
的排列称为奇排列,逆序数
为偶数
的排列称为偶排列.
i 1 , . . . , i n i_1,...,i_n i1,...,in为奇排列时, a 1 i 1 a 2 i 2 . . . a n i n a_{1i_1}a_{2i_2}...a_{ni_n} a1i1a2i2...anin带负号。
i 1 , . . . , i n i_1,...,i_n i1,...,in为偶排列时, a 1 i 1 a 2 i 2 . . . a n i n a_{1i_1}a_{2i_2}...a_{ni_n} a1i1a2i2...anin带正号。
特殊行列式
上三角
∣ D n ∣ = ∣ a 11 a 12 . . . a 1 n 0 a 22 . . . a 2 n . . . . . . . . . . . . 0 0 . . . a n n ∣ = a 11 a 22 . . . a n n |D_n| = \left| \begin{matrix} a_{11}& a_{12}& ...& a_{1n}\\ 0& a_{22}& ...& a_{2n}\\ ...& ...& ...& ...\\ 0& 0& ...& a_{nn}\\ \end{matrix} \right| = a_{11}a_{22}...a_{nn} ∣Dn∣=∣∣∣∣∣∣∣∣a110...0a12a22...0............a1na2n...ann∣∣∣∣∣∣∣∣=a11a22...ann
下三角
∣ D n ∣ = ∣ a 11 0 . . . 0 a 21 a 22 . . . 0 . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = a 11 a 22 . . . a n n |D_n| = \left| \begin{matrix} a_{11}& 0& ...& 0\\ a_{21}& a_{22}& ...& 0\\ ...& ...& ...& ...\\ a_{n1}& a_{n2}& ...& a_{nn}\\ \end{matrix} \right| = a_{11}a_{22}...a_{nn} ∣Dn∣=∣∣∣∣∣∣∣∣a11a21...an10a22...an2............00...ann∣∣∣∣∣∣∣∣=a11a22...ann
对角
∣ D n ∣ = ∣ a 11 0 . . . 0 0 a 22 . . . 0 . . . . . . . . . . . . 0 0 . . . a n n ∣ = a 11 a 22 . . . a n n |D_n| = \left| \begin{matrix} a_{11}& 0& ...& 0\\ 0& a_{22}& ...& 0\\ ...& ...& ...& ...\\ 0& 0& ...& a_{nn}\\ \end{matrix} \right| = a_{11}a_{22}...a_{nn} ∣Dn∣=∣∣∣∣∣∣∣∣a110...00a22...0............00...ann∣∣∣∣∣∣∣∣=a11a22...ann
副对角线下三角
∣ D n ∣ = ∣ 0 ⋯ 0 a 1 n 0 ⋯ a 2 , n − 1 a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , n − 1 a n n ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 . . . a n 1 |D_n| = \left| \begin{matrix} 0& \cdots& 0& a_{1n}\\ 0& \cdots& a_{2,n-1}& a_{2n}\\ \vdots& \vdots& \vdots& \vdots\\ a_{n1}& \cdots& a_{n,n-1}& a_{nn}\\ \end{matrix} \right| = (-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}...a_{n1} ∣Dn∣=∣∣∣∣∣∣∣∣∣00⋮an1⋯⋯⋮⋯0a2,n−1⋮an,n−1a1na2n⋮ann∣∣∣∣∣∣∣∣∣=(−1)2n(n−1)a1na2,n−1...an1
副对角线上三角
∣ D n ∣ = ∣ a 11 ⋯ a 1 , n − 1 a 1 n a 21 ⋯ a 2 , n − 1 0 ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ 0 0 ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 . . . a n 1 |D_n| = \left| \begin{matrix} a_{11}& \cdots& a_{1,n-1}& a_{1n}\\ a_{21}& \cdots& a_{2,n-1}& 0\\ \vdots& \vdots& \vdots& \vdots\\ a_{n1}& \cdots& 0& 0\\ \end{matrix} \right| = (-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}...a_{n1} ∣Dn∣=∣∣∣∣∣∣∣∣∣a11a21⋮an1⋯⋯⋮⋯a1,n−1a2,n−1⋮0a1n0⋮0∣∣∣∣∣∣∣∣∣=(−1)2n(n−1)a1na2,n−1...an1
行列式性质
A = 矩阵 det A = 矩阵 A 的行列式 α = 任意数 \boldsymbol{A}{=}\text{矩阵}\\ \det \boldsymbol{A}=\text{矩阵}\boldsymbol{A}\text{的行列式}\\ \alpha = \text{任意数} A=矩阵detA=矩阵A的行列式α=任意数
性质一
行列式转置,其值不变
(
det
A
)
T
=
def
det
A
T
=
det
A
\left( \det \boldsymbol{A} \right) ^{\text{T}}\xlongequal{\text{def}}\det \boldsymbol{A}^{\text{T}}=\det \boldsymbol{A}
(detA)TdefdetAT=detA
性质二
对换两列(或两行)的位置,行列式反号
det
[
a
1
⋯
a
i
⋯
a
j
⋯
a
n
]
=
−
det
[
a
1
⋯
a
j
⋯
a
i
⋯
a
n
]
\det \left[ \boldsymbol{a}_1\cdots \boldsymbol{a}_i\cdots \boldsymbol{a}_j\cdots \boldsymbol{a}_n \right] =-\det \left[ \boldsymbol{a}_1\cdots \boldsymbol{a}_j\cdots \boldsymbol{a}_i\cdots \boldsymbol{a}_n \right]
det[a1⋯ai⋯aj⋯an]=−det[a1⋯aj⋯ai⋯an]
推论
有两列(或行)全同的行列式为零
性质三
有两列数 α \alpha α乘行列式相当于用 α \alpha α乘它的某一行(或列)的所有元素。
α det [ a 1 ⋯ a i ⋯ a n ] = det [ a 1 ⋯ α a i ⋯ a n ] \alpha \det \left[ \boldsymbol{a}_1\cdots \boldsymbol{a}_i\cdots \boldsymbol{a}_n \right] =\det \left[ \boldsymbol{a}_1\cdots \alpha \boldsymbol{a}_i\cdots \boldsymbol{a}_n \right] αdet[a1⋯ai⋯an]=det[a1⋯αai⋯an]
推论
- 一行(或列)元素全为零的行列式为零
- 若有两列(或行)的元素成比例关系,行列式值为零
- 对
n
n
n阶矩阵
A
A
A,有
det ( α A ) = α n det A \det \left( \alpha \boldsymbol{A} \right) =\alpha ^n\det \boldsymbol{A} det(αA)=αndetA
性质四
det [ a 1 ⋯ a i ⋯ a n ] = det [ a 1 ⋯ c i + d i ⋯ a n ] = det [ a 1 ⋯ c i ⋯ a n ] + det [ a 1 ⋯ d i ⋯ a n ] \det \left[ \boldsymbol{a}_1\cdots \boldsymbol{a}_i\cdots \boldsymbol{a}_n \right] =\det \left[ \boldsymbol{a}_1\cdots \boldsymbol{c}_i+\boldsymbol{d}_i\cdots \boldsymbol{a}_n \right] \\ =\det \left[ \boldsymbol{a}_1\cdots \boldsymbol{c}_i\cdots \boldsymbol{a}_n \right] +\det \left[ \boldsymbol{a}_1\cdots \boldsymbol{d}_i\cdots \boldsymbol{a}_n \right] det[a1⋯ai⋯an]=det[a1⋯ci+di⋯an]=det[a1⋯ci⋯an]+det[a1⋯di⋯an]
推论
矩阵经第三类初等行(或列)变换之后,其行列式的值不变
det
[
A
C
i
j
(
k
)
]
=
det
[
R
i
j
(
k
)
A
]
=
det
A
\det \left[ \boldsymbol{AC}_{ij}\left( k \right) \right] =\det \left[ \boldsymbol{R}_{ij}\left( k \right) \boldsymbol{A} \right] =\det \boldsymbol{A}
det[ACij(k)]=det[Rij(k)A]=detA
性质五
若
i
≠
k
i\ne k
i=k,则有
∑
j
=
1
n
a
i
j
A
k
j
=
0
\sum_{j=1}^n{a_{ij}A_{kj}}=0
j=1∑naijAkj=0
若
j
≠
k
j\ne k
j=k,则有
∑
i
=
1
n
a
i
j
A
i
k
=
0
\sum_{i=1}^n{a_{ij}A_{ik}}=0
i=1∑naijAik=0
性质六
设
L
L
L是具有如下分块形式的
(
n
+
p
)
\left( n+p \right)
(n+p)阶矩阵
L
=
[
A
O
C
B
]
\boldsymbol{L}=\left[ \begin{matrix} \boldsymbol{A}& \boldsymbol{O}\\ \boldsymbol{C}& \boldsymbol{B}\\ \end{matrix} \right]
L=[ACOB]
其中
A
A
A是
n
n
n阶矩阵,
B
B
B是
p
p
p阶矩阵,则有
det
L
=
det
A
n
×
n
⋅
det
B
p
×
p
\det \boldsymbol{L}=\det \boldsymbol{A_{n \times n}}\cdot \det \boldsymbol{B_{p \times p}}
detL=detAn×n⋅detBp×p
性质七
若
A
A
A、
B
B
B为同阶矩阵,则
det
(
A
B
)
=
det
A
⋅
det
B
\det \left( \boldsymbol{AB} \right) =\det \boldsymbol{A}\cdot \det \boldsymbol{B}
det(AB)=detA⋅detB
余子式
在
n
n
n 阶行列式中,把元素
a
i
j
a_{ij}
aij 所在的第
i
i
i行和第
j
j
j列划去后,余下的
(
n
−
1
)
(n -1)
(n−1)阶行列式,称为元素
a
i
j
a_{ij}
aij的余子式
,记为
M
i
j
M_{ij}
Mij ;再记:
A
i
j
=
(
−
1
)
i
+
j
M
i
j
A_{ij} = (-1)^{i+j}M_{ij}
Aij=(−1)i+jMij
称
A
i
j
A_{ij}
Aij为元素
a
i
j
a_{ij}
aij的代数余子式。
M i j M_{ij} Mij 、 A i j A_{ij} Aij均为 ( n − 1 ) (n -1) (n−1)阶行列式;
M i j M_{ij} Mij 、 A i j A_{ij} Aij只与 a i j a_{ij} aij的位置有关,与 a i j a_{ij} aij是什么无关
例子二
例如,对三阶行列式
∣
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
∣
\left| \begin{matrix} a_{11}& a_{12}& a_{13}\\ a_{21}& a_{22}& a_{23}\\ a_{31}& a_{32}& a_{33}\\ \end{matrix} \right|
∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣
元素
a
11
a_{11}
a11的余子式和代数余子式分别为:
∣
a
11
−
−
∣
a
22
a
23
∣
a
32
a
33
∣
\left| \begin{matrix} a_{11}& -& -\\ |& a_{22}& a_{23}\\ |& a_{32}& a_{33}\\ \end{matrix} \right|
∣∣∣∣∣∣a11∣∣−a22a32−a23a33∣∣∣∣∣∣
=
=
>
==>
==>
M
11
=
∣
a
22
a
23
a
32
a
33
∣
,
A
11
=
(
−
1
)
1
+
1
M
11
=
M
11
=
∣
a
22
a
23
a
32
a
33
∣
M_{11} = \left| \begin{matrix} a_{22}& a_{23}\\ a_{32}& a_{33}\\ \end{matrix} \right|,\\ A_{11} = (-1)^{1+1}M_{11}=M_{}11 = \left| \begin{matrix} a_{22}& a_{23}\\ a_{32}& a_{33}\\ \end{matrix} \right|
M11=∣∣∣∣a22a32a23a33∣∣∣∣,A11=(−1)1+1M11=M11=∣∣∣∣a22a32a23a33∣∣∣∣
元素
a
12
a_{12}
a12的余子式和代数余子式分别为:
∣
−
a
12
−
a
21
∣
a
23
a
31
∣
a
33
∣
\left| \begin{matrix} -& a_{12}& -\\ a_{21}& |& a_{23}\\ a_{31}& |& a_{33}\\ \end{matrix} \right|
∣∣∣∣∣∣−a21a31a12∣∣−a23a33∣∣∣∣∣∣
=
=
>
==>
==>
M
12
=
∣
a
21
a
23
a
31
a
33
∣
,
A
12
=
(
−
1
)
1
+
2
M
12
=
−
M
12
=
−
∣
a
21
a
23
a
31
a
33
∣
M_{12} = \left| \begin{matrix} a_{21}& a_{23}\\ a_{31}& a_{33}\\ \end{matrix} \right|,\\ A_{12} = (-1)^{1+2}M_{12}=-M_{12} = - \left| \begin{matrix} a_{21}& a_{23}\\ a_{31}& a_{33}\\ \end{matrix} \right|
M12=∣∣∣∣a21a31a23a33∣∣∣∣,A12=(−1)1+2M12=−M12=−∣∣∣∣a21a31a23a33∣∣∣∣
性质
行列式等于它的任一行(或列)的所有元素分别与其所对应的代数余子式乘积之和,
即:
按行:
D
=
∑
j
=
1
n
a
i
j
A
i
j
,
i
∈
(
1
,
2
,
.
.
.
,
n
)
或
D
=
a
i
1
A
i
1
+
a
i
2
A
i
2
+
.
.
.
+
a
i
n
A
i
n
D = \sum_{j = 1}^n{a_{ij}A_{ij}},i\in(1,2,...,n)\\ 或D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}
D=j=1∑naijAij,i∈(1,2,...,n)或D=ai1Ai1+ai2Ai2+...+ainAin
按列:
D
=
∑
i
=
1
n
a
i
j
A
i
j
,
j
∈
(
1
,
2
,
.
.
.
,
n
)
或
D
=
a
1
j
A
1
j
+
a
2
j
A
2
j
+
.
.
.
+
a
n
j
A
n
j
D = \sum_{i = 1}^n{a_{ij}A_{ij}},j\in(1,2,...,n)\\ 或D=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj}
D=i=1∑naijAij,j∈(1,2,...,n)或D=a1jA1j+a2jA2j+...+anjAnj
行列式计算
由于篇幅可能较多,所以更新在这一篇博客里了。