线性代数学习笔记——行列式(针对期末与考研)

本文详细介绍了n阶行列式的定义及其计算方法,并列举了多种特殊行列式的计算公式。此外,还探讨了行列式的各种性质,包括转置性质、行列式元素变换的影响、行列式与矩阵的关系等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

n阶行列式定义

A = ( a i j ) A =(a_{ij}) A=(aij)是一个 n n n阶方阵,则所谓 A A A的行列式或 n n n阶行列式。指由 A A A确定一个数,记为 ∣ A ∣ ( 或 记 为 d e t A ) |A| (或记为det A ) AdetA,这个数由下式来确定:
∣ A ∣   =   ∑ ( i 1 , . . . , i n ) ∈ s n ( − 1 ) τ ( i 1 , . . . , i n ) a 1 i 1 a 2 i 2 . . . a n i n |A|\ =\ \sum_{\left( i_1,...,i_n \right) \in s_n}{\left( -1 \right) ^{\tau \left( i_1,...,i_n \right)}a_{1i_1}a_{2i_2}...a_{ni_n}} A = (i1,...,in)sn(1)τ(i1,...,in)a1i1a2i2...anin
具体来说:

  1. n n n阶行列式定义展开式中共有 n ! n! n!
  2. 右边每一项都是 n n n个数相乘, a 1 i 1 , a 2 i 2 , . . . , a n i n a_{1i_1},a_{2i_2},...,a_{ni_n} a1i1,a2i2,...,anin, n n n个元素分别来自 A A A的不同行不同列
  3. ( i 1 , . . . , i n ) ∈ s n \left( i_1,...,i_n \right) \in s_n (i1,...,in)sn s n s_n sn 1 , 2 , 3 , . . . , n 1,2,3,...,n 123...,n的全排列的集合。
  4. ( − 1 ) τ ( i 1 , . . . , i n ) \left( -1 \right) ^{\tau \left( i_1,...,i_n \right)} (1)τ(i1,...,in) a 1 i 1 a 2 i 2 . . . a n i n a_{1i_1}a_{2i_2}...a_{ni_n} a1i1a2i2...anin的系数,其中列指标排列 ( i 1 , . . . , i n ) \left( i_1,...,i_n \right) (i1,...,in)的奇偶性决定该项所带的符号(正或者负)。

排列

n n n个数 1 , 2 , 3 , . . . , n 1,2,3,...,n 1,2,3,...,n排列成一个有序 n n n元数组称为一个 n n n元排列。
注:

  • 自然排列: 1 , 2 , 3 , . . . , n 1,2,3,...,n 1,2,3,...,n
  • 1 , 3 , 2 , 4 和 4 , 2 , 1 , 3 1,3,2,4和4,2,1,3 1,3,2,44213都是4元排列,但 3 , 2 , 1 , 3 3,2,1,3 3213不是4元排列。

逆序、逆序数定义

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,则称这对数为一个逆序;一个排列中逆序的总数称为这个排列的逆序数
如果记 τ ( p i ) \tau(p_i) τ(pi)为在排列 ( p 1 , . . . , p n ) \left( p_1,...,p_n \right) (p1,...,pn)中,排在 p i p_i pi左边但大于 p i p_i pi的数的个数,
τ ( p 1 , . . . , p n ) = ∑ i = 1 n τ ( p i ) \tau \left( p_1,...,p_n \right) = \sum_{i=1}^n{\tau(p_i)} τ(p1,...,pn)=i=1nτ(pi)

例子一

求排列3,2,1,44,5,1,3,6,2的逆序数。
τ ( 3 , 2 , 1 , 4 ) = 0 + 1 + 2 + 0 = 3 \tau(3,2,1,4) = 0+1+2+0 = 3 τ(3,2,1,4)=0+1+2+0=3
则该排列逆序数为3.
τ ( 4 , 5 , 1 , 3 , 6 , 2 ) = 0 + 0 + 2 + 2 + 0 + 4 = 8 \tau(4,5,1,3,6,2) = 0+0+2+2+0+4 = 8 τ(451362)=0+0+2+2+0+4=8
则该排列逆序数为8.

奇排列、偶排列

逆序数奇数的排列称为奇排列逆序数偶数的排列称为偶排列

i 1 , . . . , i n i_1,...,i_n i1,...,in为奇排列时, a 1 i 1 a 2 i 2 . . . a n i n a_{1i_1}a_{2i_2}...a_{ni_n} a1i1a2i2...anin带负号。
i 1 , . . . , i n i_1,...,i_n i1,...,in为偶排列时, a 1 i 1 a 2 i 2 . . . a n i n a_{1i_1}a_{2i_2}...a_{ni_n} a1i1a2i2...anin带正号。

特殊行列式

上三角

∣ D n ∣ = ∣ a 11 a 12 . . . a 1 n 0 a 22 . . . a 2 n . . . . . . . . . . . . 0 0 . . . a n n ∣ = a 11 a 22 . . . a n n |D_n| = \left| \begin{matrix} a_{11}& a_{12}& ...& a_{1n}\\ 0& a_{22}& ...& a_{2n}\\ ...& ...& ...& ...\\ 0& 0& ...& a_{nn}\\ \end{matrix} \right| = a_{11}a_{22}...a_{nn} Dn=a110...0a12a22...0............a1na2n...ann=a11a22...ann

下三角

∣ D n ∣ = ∣ a 11 0 . . . 0 a 21 a 22 . . . 0 . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = a 11 a 22 . . . a n n |D_n| = \left| \begin{matrix} a_{11}& 0& ...& 0\\ a_{21}& a_{22}& ...& 0\\ ...& ...& ...& ...\\ a_{n1}& a_{n2}& ...& a_{nn}\\ \end{matrix} \right| = a_{11}a_{22}...a_{nn} Dn=a11a21...an10a22...an2............00...ann=a11a22...ann

对角

∣ D n ∣ = ∣ a 11 0 . . . 0 0 a 22 . . . 0 . . . . . . . . . . . . 0 0 . . . a n n ∣ = a 11 a 22 . . . a n n |D_n| = \left| \begin{matrix} a_{11}& 0& ...& 0\\ 0& a_{22}& ...& 0\\ ...& ...& ...& ...\\ 0& 0& ...& a_{nn}\\ \end{matrix} \right| = a_{11}a_{22}...a_{nn} Dn=a110...00a22...0............00...ann=a11a22...ann

副对角线下三角

∣ D n ∣ = ∣ 0 ⋯ 0 a 1 n 0 ⋯ a 2 , n − 1 a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , n − 1 a n n ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 . . . a n 1 |D_n| = \left| \begin{matrix} 0& \cdots& 0& a_{1n}\\ 0& \cdots& a_{2,n-1}& a_{2n}\\ \vdots& \vdots& \vdots& \vdots\\ a_{n1}& \cdots& a_{n,n-1}& a_{nn}\\ \end{matrix} \right| = (-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}...a_{n1} Dn=00an10a2,n1an,n1a1na2nann=(1)2n(n1)a1na2,n1...an1

副对角线上三角

∣ D n ∣ = ∣ a 11 ⋯ a 1 , n − 1 a 1 n a 21 ⋯ a 2 , n − 1 0 ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ 0 0 ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 . . . a n 1 |D_n| = \left| \begin{matrix} a_{11}& \cdots& a_{1,n-1}& a_{1n}\\ a_{21}& \cdots& a_{2,n-1}& 0\\ \vdots& \vdots& \vdots& \vdots\\ a_{n1}& \cdots& 0& 0\\ \end{matrix} \right| = (-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}...a_{n1} Dn=a11a21an1a1,n1a2,n10a1n00=(1)2n(n1)a1na2,n1...an1

行列式性质

A = 矩阵 det ⁡ A = 矩阵 A 的行列式 α = 任意数 \boldsymbol{A}{=}\text{矩阵}\\ \det \boldsymbol{A}=\text{矩阵}\boldsymbol{A}\text{的行列式}\\ \alpha = \text{任意数} A=矩阵detA=矩阵A的行列式α=任意数

性质一

行列式转置,其值不变
( det ⁡ A ) T = def det ⁡ A T = det ⁡ A \left( \det \boldsymbol{A} \right) ^{\text{T}}\xlongequal{\text{def}}\det \boldsymbol{A}^{\text{T}}=\det \boldsymbol{A} (detA)Tdef detAT=detA

性质二

对换两列(或两行)的位置,行列式反号
det ⁡ [ a 1 ⋯ a i ⋯ a j ⋯ a n ] = − det ⁡ [ a 1 ⋯ a j ⋯ a i ⋯ a n ] \det \left[ \boldsymbol{a}_1\cdots \boldsymbol{a}_i\cdots \boldsymbol{a}_j\cdots \boldsymbol{a}_n \right] =-\det \left[ \boldsymbol{a}_1\cdots \boldsymbol{a}_j\cdots \boldsymbol{a}_i\cdots \boldsymbol{a}_n \right] det[a1aiajan]=det[a1ajaian]

推论

有两列(或行)全同的行列式为零

性质三

有两列数 α \alpha α乘行列式相当于用 α \alpha α乘它的某一行(或列)的所有元素。

α det ⁡ [ a 1 ⋯ a i ⋯ a n ] = det ⁡ [ a 1 ⋯ α a i ⋯ a n ] \alpha \det \left[ \boldsymbol{a}_1\cdots \boldsymbol{a}_i\cdots \boldsymbol{a}_n \right] =\det \left[ \boldsymbol{a}_1\cdots \alpha \boldsymbol{a}_i\cdots \boldsymbol{a}_n \right] αdet[a1aian]=det[a1αaian]

推论

  1. 一行(或列)元素全为零的行列式为零
  2. 若有两列(或行)的元素成比例关系,行列式值为零
  3. n n n阶矩阵 A A A,有
    det ⁡ ( α A ) = α n det ⁡ A \det \left( \alpha \boldsymbol{A} \right) =\alpha ^n\det \boldsymbol{A} det(αA)=αndetA

性质四

det ⁡ [ a 1 ⋯ a i ⋯ a n ] = det ⁡ [ a 1 ⋯ c i + d i ⋯ a n ] = det ⁡ [ a 1 ⋯ c i ⋯ a n ] + det ⁡ [ a 1 ⋯ d i ⋯ a n ] \det \left[ \boldsymbol{a}_1\cdots \boldsymbol{a}_i\cdots \boldsymbol{a}_n \right] =\det \left[ \boldsymbol{a}_1\cdots \boldsymbol{c}_i+\boldsymbol{d}_i\cdots \boldsymbol{a}_n \right] \\ =\det \left[ \boldsymbol{a}_1\cdots \boldsymbol{c}_i\cdots \boldsymbol{a}_n \right] +\det \left[ \boldsymbol{a}_1\cdots \boldsymbol{d}_i\cdots \boldsymbol{a}_n \right] det[a1aian]=det[a1ci+dian]=det[a1cian]+det[a1dian]

推论

矩阵经第三类初等行(或列)变换之后,其行列式的值不变
det ⁡ [ A C i j ( k ) ] = det ⁡ [ R i j ( k ) A ] = det ⁡ A \det \left[ \boldsymbol{AC}_{ij}\left( k \right) \right] =\det \left[ \boldsymbol{R}_{ij}\left( k \right) \boldsymbol{A} \right] =\det \boldsymbol{A} det[ACij(k)]=det[Rij(k)A]=detA

性质五

i ≠ k i\ne k i=k,则有
∑ j = 1 n a i j A k j = 0 \sum_{j=1}^n{a_{ij}A_{kj}}=0 j=1naijAkj=0
j ≠ k j\ne k j=k,则有
∑ i = 1 n a i j A i k = 0 \sum_{i=1}^n{a_{ij}A_{ik}}=0 i=1naijAik=0

性质六

L L L是具有如下分块形式的 ( n + p ) \left( n+p \right) (n+p)阶矩阵
L = [ A O C B ] \boldsymbol{L}=\left[ \begin{matrix} \boldsymbol{A}& \boldsymbol{O}\\ \boldsymbol{C}& \boldsymbol{B}\\ \end{matrix} \right] L=[ACOB]
其中 A A A n n n阶矩阵, B B B p p p阶矩阵,则有
det ⁡ L = det ⁡ A n × n ⋅ det ⁡ B p × p \det \boldsymbol{L}=\det \boldsymbol{A_{n \times n}}\cdot \det \boldsymbol{B_{p \times p}} detL=detAn×ndetBp×p

性质七

A A A B B B为同阶矩阵,则
det ⁡ ( A B ) = det ⁡ A ⋅ det ⁡ B \det \left( \boldsymbol{AB} \right) =\det \boldsymbol{A}\cdot \det \boldsymbol{B} det(AB)=detAdetB

余子式

n n n 阶行列式中,把元素 a i j a_{ij} aij 所在的第 i i i行和第 j j j列划去后余下的 ( n − 1 ) (n -1) n1阶行列式,称为元素 a i j a_{ij} aij余子式,记为 M i j M_{ij} Mij ;再记:
A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j}M_{ij} Aij=(1)i+jMij
A i j A_{ij} Aij为元素 a i j a_{ij} aij的代数余子式

M i j M_{ij} Mij A i j A_{ij} Aij均为 ( n − 1 ) (n -1) n1阶行列式;

M i j M_{ij} Mij A i j A_{ij} Aij只与 a i j a_{ij} aij的位置有关,与 a i j a_{ij} aij是什么无关

例子二

例如,对三阶行列式
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \left| \begin{matrix} a_{11}& a_{12}& a_{13}\\ a_{21}& a_{22}& a_{23}\\ a_{31}& a_{32}& a_{33}\\ \end{matrix} \right| a11a21a31a12a22a32a13a23a33
元素 a 11 a_{11} a11的余子式和代数余子式分别为:
∣ a 11 − − ∣ a 22 a 23 ∣ a 32 a 33 ∣ \left| \begin{matrix} a_{11}& -& -\\ |& a_{22}& a_{23}\\ |& a_{32}& a_{33}\\ \end{matrix} \right| a11a22a32a23a33
= = > ==> ==>
M 11 = ∣ a 22 a 23 a 32 a 33 ∣ , A 11 = ( − 1 ) 1 + 1 M 11 = M 11 = ∣ a 22 a 23 a 32 a 33 ∣ M_{11} = \left| \begin{matrix} a_{22}& a_{23}\\ a_{32}& a_{33}\\ \end{matrix} \right|,\\ A_{11} = (-1)^{1+1}M_{11}=M_{}11 = \left| \begin{matrix} a_{22}& a_{23}\\ a_{32}& a_{33}\\ \end{matrix} \right| M11=a22a32a23a33,A11=(1)1+1M11=M11=a22a32a23a33
元素 a 12 a_{12} a12的余子式和代数余子式分别为:
∣ − a 12 − a 21 ∣ a 23 a 31 ∣ a 33 ∣ \left| \begin{matrix} -& a_{12}& -\\ a_{21}& |& a_{23}\\ a_{31}& |& a_{33}\\ \end{matrix} \right| a21a31a12a23a33
= = > ==> ==>
M 12 = ∣ a 21 a 23 a 31 a 33 ∣ , A 12 = ( − 1 ) 1 + 2 M 12 = − M 12 = − ∣ a 21 a 23 a 31 a 33 ∣ M_{12} = \left| \begin{matrix} a_{21}& a_{23}\\ a_{31}& a_{33}\\ \end{matrix} \right|,\\ A_{12} = (-1)^{1+2}M_{12}=-M_{12} = - \left| \begin{matrix} a_{21}& a_{23}\\ a_{31}& a_{33}\\ \end{matrix} \right| M12=a21a31a23a33,A12=(1)1+2M12=M12=a21a31a23a33

性质

行列式等于它的任一行(或列)的所有元素分别与其所对应的代数余子式乘积之和,
即:
按行:
D = ∑ j = 1 n a i j A i j , i ∈ ( 1 , 2 , . . . , n ) 或 D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n D = \sum_{j = 1}^n{a_{ij}A_{ij}},i\in(1,2,...,n)\\ 或D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in} D=j=1naijAij,i(1,2,...,n)D=ai1Ai1+ai2Ai2+...+ainAin
按列:
D = ∑ i = 1 n a i j A i j , j ∈ ( 1 , 2 , . . . , n ) 或 D = a 1 j A 1 j + a 2 j A 2 j + . . . + a n j A n j D = \sum_{i = 1}^n{a_{ij}A_{ij}},j\in(1,2,...,n)\\ 或D=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj} D=i=1naijAij,j(1,2,...,n)D=a1jA1j+a2jA2j+...+anjAnj

行列式计算

由于篇幅可能较多,所以更新在这一篇博客里了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ACxz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值