线性代数——余子式

本文介绍了行列式中元素的余子式和代数余子式的概念,并通过三阶行列式的实例展示了如何计算余子式及代数余子式。此外还详细解释了行列式的性质,特别是行列式等于其任一行或列的所有元素与对应代数余子式乘积之和的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

nnn 阶行列式中,把元素aija_{ij}aij 所在的第iii行和第 jjj列划去后余下的(n−1)(n -1)n1阶行列式,称为元素aija_{ij}aij余子式,记为MijM_{ij}Mij ;再记:
Aij=(−1)i+jMij A_{ij} = (-1)^{i+j}M_{ij}Aij=(1)i+jMij
AijA_{ij}Aij为元素aija_{ij}aij的代数余子式

MijM_{ij}MijAijA_{ij}Aij均为(n−1)(n -1)n1阶行列式;

MijM_{ij}MijAijA_{ij}Aij只与aija_{ij}aij的位置有关,与aija_{ij}aij是什么无关

例子

例如,对三阶行列式
∣a11a12a13a21a22a23a31a32a33∣ \left| \begin{matrix} a_{11}& a_{12}& a_{13}\\ a_{21}& a_{22}& a_{23}\\ a_{31}& a_{32}& a_{33}\\ \end{matrix} \right| a11a21a31a12a22a32a13a23a33
元素a11a_{11}a11的余子式和代数余子式分别为:
∣a11−−∣a22a23∣a32a33∣ \left| \begin{matrix} a_{11}& -& -\\ |& a_{22}& a_{23}\\ |& a_{32}& a_{33}\\ \end{matrix} \right| a11a22a32a23a33
==>==>==>
M11=∣a22a23a32a33∣,A11=(−1)1+1M11=M11=∣a22a23a32a33∣ M_{11} = \left| \begin{matrix} a_{22}& a_{23}\\ a_{32}& a_{33}\\ \end{matrix} \right|,\\ A_{11} = (-1)^{1+1}M_{11}=M_{}11 = \left| \begin{matrix} a_{22}& a_{23}\\ a_{32}& a_{33}\\ \end{matrix} \right| M11=a22a32a23a33,A11=(1)1+1M11=M11=a22a32a23a33
元素a12a_{12}a12的余子式和代数余子式分别为:
∣−a12−a21∣a23a31∣a33∣ \left| \begin{matrix} -& a_{12}& -\\ a_{21}& |& a_{23}\\ a_{31}& |& a_{33}\\ \end{matrix} \right| a21a31a12a23a33
==>==>==>
M12=∣a21a23a31a33∣,A12=(−1)1+2M12=−M12=−∣a21a23a31a33∣ M_{12} = \left| \begin{matrix} a_{21}& a_{23}\\ a_{31}& a_{33}\\ \end{matrix} \right|,\\ A_{12} = (-1)^{1+2}M_{12}=-M_{12} = - \left| \begin{matrix} a_{21}& a_{23}\\ a_{31}& a_{33}\\ \end{matrix} \right| M12=a21a31a23a33,A12=(1)1+2M12=M12=a21a31a23a33

性质

行列式等于它的任一行(或列)的所有元素分别与其所对应的代数余子式乘积之和,
即:
按行:
D=∑j=1naijAij,i∈(1,2,...,n)或D=ai1Ai1+ai2Ai2+...+ainAinD = \sum_{j = 1}^n{a_{ij}A_{ij}},i\in(1,2,...,n)\\ 或D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}D=j=1naijAij,i(1,2,...,n)D=ai1Ai1+ai2Ai2+...+ainAin
按列:
D=∑i=1naijAij,j∈(1,2,...,n)或D=a1jA1j+a2jA2j+...+anjAnjD = \sum_{i = 1}^n{a_{ij}A_{ij}},j\in(1,2,...,n)\\ 或D=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj}D=i=1naijAij,j(1,2,...,n)D=a1jA1j+a2jA2j+...+anjAnj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ACxz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值