在nnn 阶行列式中,把元素aija_{ij}aij 所在的第iii行和第 jjj列划去后,余下的(n−1)(n -1)(n−1)阶行列式,称为元素aija_{ij}aij的余子式
,记为MijM_{ij}Mij ;再记:
Aij=(−1)i+jMij A_{ij} = (-1)^{i+j}M_{ij}Aij=(−1)i+jMij
称AijA_{ij}Aij为元素aija_{ij}aij的代数余子式。
MijM_{ij}Mij 、AijA_{ij}Aij均为(n−1)(n -1)(n−1)阶行列式;
MijM_{ij}Mij 、AijA_{ij}Aij只与aija_{ij}aij的位置有关,与aija_{ij}aij是什么无关
例子
例如,对三阶行列式
∣a11a12a13a21a22a23a31a32a33∣
\left| \begin{matrix}
a_{11}& a_{12}& a_{13}\\
a_{21}& a_{22}& a_{23}\\
a_{31}& a_{32}& a_{33}\\
\end{matrix} \right|
∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣
元素a11a_{11}a11的余子式和代数余子式分别为:
∣a11−−∣a22a23∣a32a33∣
\left| \begin{matrix}
a_{11}& -& -\\
|& a_{22}& a_{23}\\
|& a_{32}& a_{33}\\
\end{matrix} \right|
∣∣∣∣∣∣a11∣∣−a22a32−a23a33∣∣∣∣∣∣
==>==>==>
M11=∣a22a23a32a33∣,A11=(−1)1+1M11=M11=∣a22a23a32a33∣
M_{11} =
\left| \begin{matrix}
a_{22}& a_{23}\\
a_{32}& a_{33}\\
\end{matrix} \right|,\\
A_{11} = (-1)^{1+1}M_{11}=M_{}11 =
\left| \begin{matrix}
a_{22}& a_{23}\\
a_{32}& a_{33}\\
\end{matrix} \right|
M11=∣∣∣∣a22a32a23a33∣∣∣∣,A11=(−1)1+1M11=M11=∣∣∣∣a22a32a23a33∣∣∣∣
元素a12a_{12}a12的余子式和代数余子式分别为:
∣−a12−a21∣a23a31∣a33∣
\left| \begin{matrix}
-& a_{12}& -\\
a_{21}& |& a_{23}\\
a_{31}& |& a_{33}\\
\end{matrix} \right|
∣∣∣∣∣∣−a21a31a12∣∣−a23a33∣∣∣∣∣∣
==>==>==>
M12=∣a21a23a31a33∣,A12=(−1)1+2M12=−M12=−∣a21a23a31a33∣
M_{12} =
\left| \begin{matrix}
a_{21}& a_{23}\\
a_{31}& a_{33}\\
\end{matrix} \right|,\\
A_{12} = (-1)^{1+2}M_{12}=-M_{12} = -
\left| \begin{matrix}
a_{21}& a_{23}\\
a_{31}& a_{33}\\
\end{matrix} \right|
M12=∣∣∣∣a21a31a23a33∣∣∣∣,A12=(−1)1+2M12=−M12=−∣∣∣∣a21a31a23a33∣∣∣∣
性质
行列式等于它的任一行(或列)的所有元素分别与其所对应的代数余子式乘积之和,
即:
按行:
D=∑j=1naijAij,i∈(1,2,...,n)或D=ai1Ai1+ai2Ai2+...+ainAinD = \sum_{j = 1}^n{a_{ij}A_{ij}},i\in(1,2,...,n)\\
或D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}D=j=1∑naijAij,i∈(1,2,...,n)或D=ai1Ai1+ai2Ai2+...+ainAin
按列:
D=∑i=1naijAij,j∈(1,2,...,n)或D=a1jA1j+a2jA2j+...+anjAnjD = \sum_{i = 1}^n{a_{ij}A_{ij}},j\in(1,2,...,n)\\
或D=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj}D=i=1∑naijAij,j∈(1,2,...,n)或D=a1jA1j+a2jA2j+...+anjAnj