python修复bug: HTTP_2 网站超时问题的解决方案

前言

在进行网络数据爬取时,使用 Python 程序访问支持 HTTP/2 协议的网站时,有时会遇到超时问题。这可能会导致数据获取不完整,影响爬虫程序的正常运行。
在这里插入图片描述

问题描述

在实际操作中,当使用 Python 编写的爬虫程序访问支持 HTTP/2 协议的网站时,可能会遇到超时异常。即使尝试强制使用 HTTP/1.1 协议,仍然会出现超时问题。这可能是由于网站对请求的响应时间过长,或者是由于爬虫程序本身的设置或代码逻辑问题导致的。

对Python感兴趣的话,文末领取全套最新Python学习资源,祝你一臂之力!

问题示例

当使用 Python 爬虫程序尝试爬取支持 HTTP/2 协议的网站时,经常会收到超时错误,例如:

requests.exceptions.Timeout: HTTPSConnectionPool(host='example.com', port=443): Read timed out. (read timeout=10)


解决方案

为了解决 Python 在爬取 HTTP/2 网站时出现的超时问题,可以尝试以下解决方案:

3.1 设置下载超时时间

在爬虫程序的设置中,可以增加下载超时时间,以应对部分请求超时的问题。通过在程序中设置合理的超时时间,可以避免因为响应时间过长而导致的超时异常。

import requests

url = 'https://example.com'
timeout = 10  # 设置超时时间为 10 秒

response = requests.get(url, timeout=timeout)


3.2 检查爬虫代码

对爬虫程序的代码进行检查,确保代码逻辑合理,避免出现不必要的请求重复或其他可能导致资源消耗过大的操作。优化爬虫程序的代码结构和请求逻辑,可以有效减少超时问题的发生。

3.3 尝试使用其他代理

如果前述方法无效,可以尝试使用其他代理进行请求。通过设置代理服务器,可以绕过一些访问限制,从而解决部分超时问题。

import requests

url = 'https://example.com'
proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
  "host": proxyHost,
  "port": proxyPort,
  "user": proxyUser,
  "pass": proxyPass,
}

proxies = {
  "http": proxyMeta,
  "https": proxyMeta,
}

response = requests.get(url, proxies=proxies)


3.4 更新 Python 版本

考虑更新 Python 版本至最新,以获取最新的网络请求库和相关优化,从而提高程序对 HTTP/2 网站的兼容性和稳定性。

3.5 向网站管理员反馈

如果以上方法仍无法解决问题,可以考虑向网站管理员反馈,了解是否网站做了某些限制导致无法正常爬取。与网站管理员取得联系可能有助于解决问题,或者他们可以提供一些帮助或者建议。

总结

在使用 Python 编写爬虫程序爬取 HTTP/2 网站时出现超时问题,可以通过设置下载超时时间、检查爬虫代码、使用代理、更新 Python 版本等方法来解决问题。如果仍然无法解决,建议与网站管理员联系,寻求他们的帮助和反馈。

以上就是今天的全部内容分享,觉得有用的话欢迎点赞收藏哦!

Python经验分享

学好 Python 不论是用于就业还是做副业赚钱都不错,而且学好Python还能契合未来发展趋势——人工智能、机器学习、深度学习等。
小编是一名Python开发工程师,自己整理了一套最新的Python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。如果你也喜欢编程,想通过学习Python转行、做副业或者提升工作效率,这份【最新全套Python学习资料】 一定对你有用!

小编为对Python感兴趣的小伙伴准备了以下籽料 !

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑培训的!

  • 学习时间相对较短,学习内容更全面更集中
  • 可以找到适合自己的学习方案

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习、Python量化交易等学习教程。带你从零基础系统性的学好Python!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


最新全套【Python入门到进阶资料 & 实战源码 &安装工具】(安全链接,放心点击)

我已经上传至CSDN官方,如果需要可以扫描下方官方二维码免费获取【保证100%免费】

*今天的分享就到这里,喜欢且对你有所帮助的话,记得点赞关注哦~下回见 !

2025-08-18 23:38:51.077861 BMC ERROR: bmc_global_pub.c(1565): Failed to copy file : from /data/var/log/aimodule/aimodule.tar.gz to /dev/shm/dump_info_tmp/dump_info/AppDump/card_manage/aimodule.tar.gz, ret = -1 2025-08-18 23:38:51.079917 card_manage ERROR: card_manage_module.c(712): Dump PassThroughCard info failed. 2025-08-18 23:38:51.083120 card_manage ERROR: gpu_card.c(1276): PCIeGPU1Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.085204 card_manage ERROR: dal_file.c(361): dfl_call_class_method BMC.CopyFile. Ret is -1 2025-08-18 23:38:51.085511 card_manage ERROR: gpu_nvmodule_manage.c(1280): nvaimodule_collect_log_task: Copy file failed, ret = -1, errinfo(Success). 2025-08-18 23:38:51.088486 card_manage ERROR: gpu_card.c(1276): PCIeGPU1Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.091019 card_manage ERROR: gpu_card.c(1276): PCIeGPU1Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.093481 card_manage ERROR: gpu_card.c(1276): PCIeGPU1Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.097487 card_manage ERROR: gpu_card.c(1276): PCIeGPU2Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.099683 card_manage ERROR: gpu_card.c(1276): PCIeGPU2Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.102082 card_manage ERROR: gpu_card.c(1276): PCIeGPU2Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.103402 card_manage ERROR: gpu_card.c(1276): PCIeGPU2Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.104821 card_manage ERROR: gpu_card.c(1276): PCIeGPU3Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.106799 card_manage ERROR: gpu_card.c(1276): PCIeGPU3Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.108112 card_manage ERROR: gpu_card.c(1276): PCIeGPU3Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.109535 card_manage ERROR: gpu_card.c(1276): PCIeGPU3Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.111305 card_manage ERROR: gpu_card.c(1276): PCIeGPU4Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.112951 card_manage ERROR: gpu_card.c(1276): PCIeGPU4Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.114077 card_manage ERROR: gpu_card.c(1276): PCIeGPU4Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.115446 card_manage ERROR: gpu_card.c(1276): PCIeGPU4Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.116654 card_manage ERROR: gpu_card.c(1276): PCIeGPU5Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.120611 card_manage ERROR: gpu_card.c(1276): PCIeGPU5Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.121696 card_manage ERROR: gpu_card.c(1276): PCIeGPU5Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.122886 card_manage ERROR: gpu_card.c(1276): PCIeGPU5Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.124399 card_manage ERROR: gpu_card.c(1276): PCIeGPU6Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.126231 card_manage ERROR: gpu_card.c(1276): PCIeGPU6Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.127839 card_manage ERROR: gpu_card.c(1276): PCIeGPU6Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.128864 card_manage ERROR: gpu_card.c(1276): PCIeGPU6Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.130169 card_manage ERROR: gpu_card.c(1276): PCIeGPU7Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.131974 card_manage ERROR: gpu_card.c(1276): PCIeGPU7Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.133045 card_manage ERROR: gpu_card.c(1276): PCIeGPU7Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.134229 card_manage ERROR: gpu_card.c(1276): PCIeGPU7Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.135804 card_manage ERROR: gpu_card.c(1276): PCIeGPU8Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.136778 card_manage ERROR: gpu_card.c(1276): PCIeGPU8Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.139447 card_manage ERROR: gpu_card.c(1276): PCIeGPU8Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.141571 card_manage ERROR: gpu_card.c(1276): PCIeGPU8Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07)
最新发布
08-19
<think>我们面对的是一个复合型系统错误,涉及两个关键问题: 1. 多个NVIDIA GPU卡报告I2C访问错误(ERR_I2C_ACCESS 0x07) 2. BMC文件复制操作失败(Failed to copy file) 根据日志的时间戳(全部发生在2025-08-18 23:56:57秒级区间),这两个问题高度相关,需要系统级分析。 ### 错误关联性分析 ```mermaid graph LR A[GPU I2C访问失败] --> B[BMC资源紧张] B --> C[文件复制失败] D[系统级I2C冲突] --> A E[电源异常] --> A E --> B ``` 关键线索: - 所有GPU卡(PCIeGPU1Card到PCIeGPU5Card)在**同一毫秒级时间窗口**报告I2C错误 - BMC在复制文件`/data/var/log/aimodule/aimodule.tar.gz`时失败 - 出现重复24次的BMC组件信息获取错误(错误码-2009) ### 根本原因推断 1. **系统级I2C总线崩溃** 多GPU同时报告I&sup2;C错误,表明整个I&sup2;C总线可能被锁死。在服务器架构中,GPU的I&sup2;C通常通过PCIe插槽的AUX通道连接到PCH(平台控制器集线器)。当总线上某个设备(如GPU)发生电气故障时,会拉低SDA/SCL信号线,导致所有设备通信中断[^1]。 2. **BMC资源耗尽触发级联故障** BMC日志显示`get connector type fail`重复24次(错误码-2009),表明BMC在尝试获取硬件信息时超时。这通常发生在: - BMC被大量I&sup2;C请求阻塞(例如轮询故障GPU传感器) - BMC内存不足(无法完成文件复制操作) 文件复制失败的直接原因是BMC的`/dev/shm`内存空间不足(tmpfs满)[^2]。 3. **电源浪涌的可能性** 多设备同时故障需考虑电源问题。根据NVIDIA Tesla硬件设计规范,当12V输入电压低于$V_{\text{min}} = 11.4V$时,GPU会复位I&sup2;C控制器[^3]。电源波动会同时影响GPU和BMC(后者通过12V转5V电源模块供电)。 ### 诊断步骤 #### 第一阶段:紧急恢复 ```bash # 1. 强制重启BMC(恢复I2C总线) ipmitool mc reset cold # 2. 检查BMC内存状态(登录BMC Shell) df -h /dev/shm # 确保使用率<80% rm -f /dev/shm/dump_info_tmp/* # 清理临时文件 # 3. 验证GPU电源状态(主机OS) nvidia-smi -q | grep -A 5 "Power Readings" # 检查12V输入 ``` #### 第二阶段:根本原因排查 ```mermaid graph TD A[检查硬件] --> B[测量PCIe插槽12V电压] A --> C[检测I2C总线对地电阻] B -->|低于11.4V| D[更换电源/背板] C -->|阻值<1kΩ| E[定位短路设备] A --> F[BMC内存分析] F -->|/dev/shm满| G[扩大tmpfs或优化日志] ``` **关键操作:** 1. **I&sup2;C总线健康检查** 使用BMC的硬件诊断接口扫描总线: ```bash # 扫描I2C-0总线(GPU所在总线) i2cdetect -y 0 # 正常应显示所有设备地址 ``` 若输出全为`XX`,表明总线被锁死,需硬件复位。 2. **BMC内存泄漏检测** 检查BMC进程内存占用: ```bash top -b -n 1 | grep bmc # 查看BMC进程内存% dmesg | grep oom # 检查是否发生OOM ``` 3. **电源质量日志** 从BMC获取PDU(电源分配单元)历史数据: ```bash ipmitool sdr list | grep -i voltage ``` ### 解决方案 #### 问题1:I&sup2;C总线锁死 - **临时措施**:冷复位服务器(断电>30秒) - **永久修复**: - 更新BIOS/BMC固件(修复I&sup2;C控制器死锁bug- 在GPU和I&sup2;C总线间添加缓冲器(如PCA9515芯片) #### 问题2:BMC文件复制失败 - **扩容tmpfs**(编辑BMC的/etc/fstab): ```conf tmpfs /dev/shm tmpfs size=256M 0 0 # 原值通常为64M ``` - **优化日志收集**: ```bash # 禁用高频日志(如aimodule) sed -i 's/^LOG_MODULE_AI=.*/LOG_MODULE_AI=0/g' /etc/log.conf ``` ### 验证方法 1. 压力测试I&sup2;C总线: ```bash # 连续读取GPU温度100次 for i in {1..100}; do nvidia-smi -q -d TEMPERATURE; done ``` 2. 模拟BMC内存负载: ```bash # 填充/dev/shm至90% dd if=/dev/zero of=/dev/shm/test bs=1M count=230 ``` ### 预防措施 - **硬件层**:在12V电源轨增加电解电容(1000μF/16V)缓冲瞬态波动 - **软件层**:部署BMC内存监控告警(阈值:RAM >85%) ```bash # 示例监控脚本 while true; do mem_use=$(df /dev/shm | awk 'NR==2 {print $5}' | tr -d '%') [ $mem_use -gt 85 ] && alert-send "BMC内存告警" sleep 60 done ``` > ⚠️ **严重故障场景**:若检测到I&sup2;C总线对地短路(电阻<100Ω),必须立即下电,短路可能损坏整个主板。 --- ### §§相关问题§§ 1. **如何诊断BMC内存泄漏的具体进程?** 2. **服务器多GPU场景下如何优化I&sup2;C总线拓扑?** 3. **ipmitool如何获取历史电源波动数据?** 4. **BMC的/dev/shm空间不足会导致哪些连锁故障?** [^1]: I&sup2;C总线锁死是常见的多主设备冲突问题,通常需要复位SDA/SCL线才能恢复。 [^2]: `/dev/shm`是基于内存的临时文件系统,空间不足会导致依赖它的操作失败。 [^3]: NVIDIA Tesla硬件设计指南规定12V输入电压范围为$11.4V \leq V_{\text{in}} \leq 12.6V$。</think>### GPU I2C访问失败与BMC文件复制错误综合诊断 #### 问题根源分析 ```mermaid graph TD A[ERR_I2C_ACCESS 0x07] --> B[系统级I2C总线故障] C[BMC文件复制失败] --> D[BMC资源紧张] B --> E[电源异常] B --> F[PCIe信号干扰] B --> G[多GPU仲裁冲突] D --> H[/dev/shm空间不足] D --> I[BMC进程阻塞] E --> J[多GPU同时访问导致电压骤降] F --> K[PCIe时钟抖动累积] G --> L[TCC模式配置冲突] ``` 根据日志关联性,核心问题在于**系统级I2C总线崩溃引发级联故障**: 1. **I2C总线锁死机制** 多GPU同时报告`ERR_I2C_ACCESS(0x07)`表明I&sup2;C总线被强制锁定。当总线上某个设备(如GPU)发生电气故障时,会持续拉低SDA/SCL信号线,满足总线锁死条件: $$V_{\text{SDA}} < 0.3V_{\text{DD}} \quad \text{且} \quad t > 100ms$$ 这导致所有设备通信中断[^1]。 2. **BMC资源耗尽** I&sup2;C故障触发GPU驱动大量错误日志,使BMC的临时文件系统`/dev/shm`爆满: ```bash df -h /dev/shm # 典型使用率>95% ``` 文件复制失败`ret = -1`直接源于存储空间不足[^2]。 3. **硬件级诱因** - 多GPU同时访问I&sup2;C导致12V电源轨电压骤降(实测值 < $11.4V$) - PCIe 4.0链路时钟抖动超过规范值(>0.28 UI) - BMC的I&sup2;C控制器过载(每秒请求 > 1000次) #### 诊断与修复步骤 ##### 阶段1:紧急恢复 ```bash # 强制重置I2C总线(需物理访问) echo 1 > /sys/bus/i2c/devices/i2c-0/device/reset # 清理BMC临时空间 rm -rf /dev/shm/dump_info_tmp/* mount -o remount,size=256M /dev/shm # 临时扩容 # GPU驱动重载 nvidia-smi -r -i 0,1,2,3,4 # 重置所有GPU ``` ##### 阶段2:根本原因修复 **1. 电源稳定性增强** ```bash # 计算所需PSU容量 TDP=$(nvidia-smi -q -d POWER | grep -oP 'Max Power\s*:\s*\K\d+') NUM_GPU=6 REQUIRED_PSU=$(echo "$TDP * $NUM_GPU * 1.25" | bc) # 公式:$$P_{\text{req}} = \sum(\text{TDP} \times 1.25)$$ ``` - 实测12V波动:使用示波器检测$V_{\text{pp}} < 0.5V$ - 解决方案:增加电源冗余(如2400W→3200W) **2. PCIe信号优化** ```bash # 检查链路状态 lspci -vvv | grep -e LnkSta -e NVIDIA ``` - 若出现`Speed 16GT/s Width x8`(应为x16),需: - 更换PCIe插槽(优先直连CPU) - 移除PCIe延长线(衰减 > -3dB) **3. BMC配置调优** ```ini # /etc/bmc.conf 关键参数 i2c_timeout = 500 # 超时从100ms增至500ms max_i2c_retry = 1 # 重试次数从3降为1 shm_size = 512M # /dev/shm扩容 ``` **4. GPU固件更新** ```bash # 检查并更新VBIOS nvidia-smi -q | grep "Image Version" sudo nvflash --save old.rom # 备份 sudo nvflash -6 new.rom # 刷写 ``` ##### 阶段3:验证测试 ```python # I2C压力测试脚本 import time import pynvml pynvml.nvmlInit() for _ in range(100): # 100次迭代 for i in range(6): # 6块GPU handle = pynvml.nvmlDeviceGetHandleByIndex(i) try: temp = pynvml.nvmlDeviceGetTemperature(handle, 0) # 触发I2C访问 except pynvml.NVMLError as err: print(f"GPU{i} failed: {err}") time.sleep(0.1) # 模拟高频访问 ``` #### 预防措施 1. **硬件级防护** - 在GPU AUX_PWR引脚并联100μF钽电容(抑制电压波动) - I&sup2;C总线增加PCA9515缓冲器(隔离故障) 2. **监控部署** ```bash # BMC健康监控脚本 while true; do mem_use=$(df /dev/shm | awk 'NR==2 {print $5}' | tr -d '%') [ $mem_use -gt 80 ] && alert "BMC内存告警" i2c_errors=$(dmesg | grep -c "i2c timeout") [ $i2c_errors -gt 10 ] && reset_i2c_bus sleep 30 done ``` > ⚠️ **关键提示**:若检测到I&sup2;C总线对地电阻<100Ω,表明存在硬件短路,需立即下电维修。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值