【珍藏】Mem0架构原理解析:构建大模型Agent记忆系统的关键技术点详解

本文深入解析Mem0架构原理,详细拆解其记忆提取、决策与总结的核心流程,揭示图内存存储机制与冲突检测技术。对于希望构建Agent长期记忆系统的开发者,Mem0提供了宝贵的实践参考与最佳经验。通过理解Mem0的设计思路与局限,可助力你打造更完善的记忆系统,为AI Agent赋予人格化与长期记忆能力,让AI从"工具"进化为真正的"智能助手"。


本文主要对Mem0的整体架构和原理进行分析。

个人认为Mem0中的核心理念是实现完整长期记忆系统路上不可缺少的内容,所以对其的学习理解是搭建完整Agent记忆系统实践前应该做的。

  1. Mem0工作架构原理

这张图来自于Mem0团队发布的论文,主要对Mem0的核心实现逻辑进行了说明,这里我们对它进行拆解:

  • Extraction Phase

    该模块主要作为“记忆提取器”,通过和用户最新的交互,提取可能作为新记忆信息,提取出来作为Raw Memories给到后续模块

    通过接收Agent和用户的Message,收集最近的"M"条的Message作为New Memories的上下文窗口,并将这段New Memories提取到Update Phase

  • Update Phase

    该模块主要作为“记忆决策机”,对接收到Raw Memories进行判定,并对记忆的处理进行决策:增删改查。

  • Update Phase接收到提取出来的Raw Memories后,该模块还会从Database检索出"S"个最相似、最具关联性的历史记忆,并通过一个"tool call"的机制,将New Memories和历史记忆进行比对,并交由大模型决策New Memories的结果:增删改或者无操作。
  • NOOP:用于新记忆不需要修改至Database。

  • DELETE:用于删除与新记忆相矛盾的记忆。

  • UPDATE:用于补充、扩充现有记忆。

  • Add:用于当历史记忆与新记忆完全不同时,创建新记忆。

  • 此后,对New Memories的决策将直接Update到Database。

    这里需要注意,整个模块的所有决策,都直接由LLM自行进行决策,Mem0没有给产品化的处理设计,而是由LLM整体处理。

  • Others
  • 除了这个核心链路之外,Mem0的这套架构还设计了一个独立、异步运行的Summary Generator,用于结合记忆提取器中提取到的短期记忆和长期记忆——为对话中的工作记忆提供长期记忆的输入。 换句话说,这个设计为Agent在工作中可以引用长期记忆的输入,为Agent提供更多工作输入参考,比如结合用户偏好进行结果交付。

上文提到的"M"和"S",在Mem0的论文中有说到他们的最佳实践:M = 10, S = 10。

除此之外,他们引入的所有LLM均为GPT - 4o-mini,他们的向量数据库也采用了密集嵌入技术,以便在Update阶段进行更加高效的相似性搜索。

  1. 图内存

Mem0整体存储机制使用的是“图内存”,即知识图谱的形式,通过实体和关系链接,用一个可视化的“图”来存储和管理记忆。

在Extraction 和 Update阶段,Mem0架构由LLM将Message,或者说Raw Memories处理为“实体”和“关系”。并且在Update阶段,会通过冲突检测和解决机制将New Memories整合到现有的知识图谱。

这种基于图的记忆方式,可以有效捕捉、存储和检索自然语言交互中的上下文信息。在这个框架中,Memories被标记为一个有向标记图G = (V, E, L),其中:

  • V - 代表实体(比如人名、地名)
  • E - 代表关系(比如“住在”)
  • L - 代表节点指定语义类型(比如 Alice - 人, San_Francisco - 城市)

每个实体节点包含三个部分:

  1. 实体类型分类:用于对实体进行分类(如任务、地点、实践)
  2. 嵌入向量:用于捕捉实体的语义
  3. 元数据:包括创建时间戳

在Extraction阶段,采用了两个阶段对Message进行处理:

  1. Entity Extractor:实体提取模块。这个模块将会处理输入的文本,并将其识别为实体,如上文,实体代表对话中的关键信息元素,包括人、地点、对象、概念、事件和属性,这些都会被识别成为实体并在记忆图中进行表示。 实体提取器通过分析对话中的元素的语义重要性、唯一性和持久性来识别和区分这些不同的实体。

    比如,在关于旅游计划的对话中,实体可能包括目的地(城市、国家)、交通方式、日期、活动、偏好等等。

  2. Relations Generator:关系生成器。这个模块将会在前一步识别出来的实体之间建立有意义的联系。这个模块同样也会基于LLM模块对提取的实体以及其在对话中的上下文进行分析,并基于此确定语义上的重要联系:对于每个潜在的实体,生成器都会评估是否存在有意义的关系链接。如果有关系,将会用“住在”、“拥有”、“发生”等标签,对关系进行分类。

  • 这个模块Mem0做了一些prompt的设计,引导LLM对对话中的显性陈述和隐性信息进行推理,从而生成完整的知识图谱。
  • 对于每个新的关系组,生成器都会计算与新实体相似度超过了阈值"t"的现有节点,并根据现有节点的存在情况,系统可以通过创建多个节点、或者只创建一个节点、又或者基于现有节点将新实体容纳至知识图谱中。
  1. 冲突机制

为了保证记忆的可用性、或者说知识图谱的一致性,Mem0设计了冲突检测机制:当有新关系出现时,这个机制会识别和现有关系可能存在的冲突点。

随后,通过Update Resolver来决定最终关系的兼容——哪些关系应该被淘汰、标记为无效的。

  1. 记忆检索

Mem0的记忆检索方式,采用了两条途径:

  1. 基于实体的检索:首先识别出查询中的关键实体,然后利用语义相似性来定位到知识图谱中的相应节点。

  2. 关系组检索:作为补充,将整个查询编码为一个密集的嵌入向量,然后将这个嵌入向量与知识图谱中的进行匹配查找。

  3. 总结

Mem0的结构设计比较清晰,了解它的实现原理和结构设计对于长期记忆的了解学习非常重要,其中的实验策略以及一些最佳实践的数据也是在长期记忆事件过程中非常重要的输入和参考。

但是个人从产品角度来讲,其中部分逻辑处理得比较简单,例如整个冲突机制,Mem0都是直接交给LLM进行处理,并没有考虑做产品化的处理;包括在整体记忆系统的设计广度也有所缺失,整个系统还是围绕核心的短期记忆到长期记忆的处理链路进行设计,并没有从一个完整的记忆系统角度进行设计,以及长期记忆系统在Agentic角度如何进行作用也没有更多探讨。 此外,记忆处理过程中的时间因素、更新机制等,没有更多的产品化设计,全部交由LLM会过于黑盒。

个人认为长期记忆系统是Agentic实现的核心模块,实现了完整的记忆系统,才可以搭建一个有人格化挂载、长期记忆、主动交互的Agentic AI。基于记忆系统,我们可以给Agent挂载人格化设定(例如性格、角色、性格特征),可以实现长期记忆、还可以进一步做更多的主动交互能力,让Agent不再是“碰一下动一下”的工具,而是有着性格和记忆的一个助手。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值