李继刚的Prompt三则可解读为"是什么-为什么-怎么办"三段论,揭示了AI沟通需介于代码和文字之间的"融合语言"。诗歌式Prompt因其压缩信息和人类风格可能更有效,但需结构化约束。未来文科可能替代计算机科学成为主流,因为AI沟通最终回归"说好一句话"的基本命题,文化线将引导科技发展。
李继刚先生的Prompt三则(6):
=== 知识向导 ===
=== 你的角色 ===
一位深谙学习之道的引路人。你知道每个领域都有其隐秘的入口,也知道初学者最容易在哪里迷失。
=== 核心使命 ===
为渴望理解新领域的探索者点亮第一盏灯。不是给他们一张地图,而是让他们看懂这片土地的纹理。
=== 引导原则 ===
先见森林,再看树木——整体图景比细节更重要
先通脉络,再填血肉——核心概念比周边知识更关键
先建直觉,再立逻辑——感性认识是理性理解的基础
先解决"为什么",再回答"是什么"——动机比定义更能驱动学习
=== 价值序列 ===
可理解性 > 完整性实用性 > 系统性激发兴趣 > 灌输知识建立信心 > 展示深度
=== 呈现智慧 ===
像一位经验丰富的登山向导:知道哪条路最适合初学者,哪些风景不容错过,哪里需要停下来适应,哪里可以加快脚步。你的材料应该让学习者感到:“原来这个领域是这样的格局!”
=== 终极目标 ===
让学习者在最短时间内获得"我能学会这个"的信心,和"我知道该往哪个方向深入"的方向感。
这是李继刚在7月写的势能式,但是我怎么看怎么感觉,这不就是“是什么-为什么-怎么办”的三段论衍生吗?
是什么:
【你的角色】=对话的主体
为什么:
【核心使命】=对话的目标
怎么办:
【引导原则】=对话的方式
【价值序列】=对话的立场
怎么说:
【呈现智慧】=对话的展示
总结:
【终极目标】=对话的核心
你会发现这整个Prompt拥有至少两种形式的解读,它既可以被视为一篇简短的隐喻性诗歌,又类似于信息“输入-处理-输出”的结构化代码。
我写到这里不由得想到一种合理的猜想,如果天平的两端是机器和人类,那么AI的定位就在机器和人中间杠杆的某个位置。
而机器的语言是代码,人类的语言是文字,那么和AI交流的语言是否应该是介于代码和文字之间的某种“融合语言”?
那么为什么诗歌更优于一般的文字形式呢?
因为诗歌本身具备一定的人类风格和压缩信息,那么这种信息就能够在AI的语言体系中解压。
当然,这需要作者对于意境的充分把握,需要利用一些经典元素去塑造那部分“不可言说”的意会。
然而,这种诗歌需要遵从一定结构化的约束,来便于AI以机器代码的方式进行解析。否则,AI极有可能迷失在语言的海洋中,同样给出一个“华而不实”的回答。
所以,这几天我看到已经有报道:文科专业即将代替计算机科学站上历史舞台。因为,你最终会发现,Prompt这种和AI沟通的语言最终会化归到“说好一句话”,这个从小学就被强调的命题。
当然,这种趋势其实也是一种历史发展的必然:当科技线发展达到瓶颈时,就必须要文化线去对齐这种技术的基线,然后再由文化线的发展去确定科技线的方向,比如“人工智能审查”、“人工智能安全”、“人工智能伦理”这些未来可能成立专业的方向。
零基础如何高效学习大模型?
你是否懂 AI,是否具备利用大模型去开发应用能力,是否能够对大模型进行调优,将会是决定自己职业前景的重要参数。
为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和鲁为民博士系统梳理大模型学习脉络,这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️
【大模型全套视频教程】
教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。
从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。
同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!
深耕 AI 领域技术专家带你快速入门大模型
跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!
【精选AI大模型权威PDF书籍/教程】
精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。
【AI 大模型面试题 】
除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。
【大厂 AI 岗位面经分享(92份)】
【AI 大模型面试真题(102 道)】
【LLMs 面试真题(97 道)】
【640套 AI 大模型行业研究报告】
【AI大模型完整版学习路线图(2025版)】
明确学习方向,2025年 AI 要学什么,这一张图就够了!
👇👇点击下方卡片链接免费领取全部内容👇👇
抓住AI浪潮,重塑职业未来!
科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。
行业趋势洞察:
- 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
- 人才争夺战: 拥有3-5年经验、扎实AI技术功底和真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
- 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。
与其观望,不如行动!
面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。
01 为什么分享这份学习资料?
当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。
因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!
我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。
*02 这份资料的价值在哪里?*
专业背书,系统构建:
-
本资料由我与鲁为民博士共同整理。鲁博士拥有清华大学学士和美国加州理工学院博士学位,在人工智能领域造诣深厚:
-
- 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇。
- 拥有多项中美发明专利。
- 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
-
目前,我有幸与鲁博士共同进行人工智能相关研究。
内容实用,循序渐进:
-
资料体系化覆盖了从基础概念入门到核心技术进阶的知识点。
-
包含丰富的视频教程与实战项目案例,强调动手实践能力。
-
无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考,助力你提升技术能力,向大模型相关岗位转型发展。
抓住机遇,开启你的AI学习之旅!