Ollama+MaxKB 搭建本地大模型知识库

大模型在训练时学习到的知识大部分都是些通用知识,当我们向它提问一下专业领域的知识时,往往不能得到很多的效果。

对于这种情况,我们可以将涉及到的一些专业或预备知识构建成知识库,在模型回答问题时让它去知识库中找到最相关的段落,然后带着这些知识与问题一起生成更精准的回答。

在这方面目前已经有了比较成熟的开源项目MaxKB,说不多话,直接分享如何搭建本地大模型知识库

首先登录ollama官网(https://ollama.com/download/),点击对应操作系统下载后一键安装

在这里插入图片描述

ollama本地部署开源模型

在这里插入图片描述

docker拉取MaxKB镜像并运行

官方指导文档(https://maxkb.cn/docs/installation/online_installtion/)

docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages cr2.fit2cloud.com/1panel/maxkb

在这里插入图片描述

在这里插入图片描述

通过8080端口访问(默认用户名admin,密码MaxKB@123…)进去后可以修改密码

在这里插入图片描述

选择添加ollama供应商

在这里插入图片描述

如果基础模型不在选项中,可以直接填写ollama run的模型名称然后回车,api域名填ollama所在机器的ip:11434端口,本地大模型的apikey随意填非空即可

在这里插入图片描述

(如果添加后显示api域名无效,首先确保不要使用127.0.0.1和localhost,还是不行修改环境变量OLLAMA_HOST为0.0.0.0再重启ollama)

创建知识库

在这里插入图片描述

点击上传文档,然后创建并导入

在这里插入图片描述

选择智能分段并导入,完成后如下图

在这里插入图片描述

然后创建应用

在这里插入图片描述

选择之前创建的模型,关联创建的知识库,最后保存并发布

在这里插入图片描述

选中概览,点击演示

在这里插入图片描述

与直接在模型中提问比较效果

在这里插入图片描述

由于我构建知识库时上传pdf的是一篇讨论中国在人工智能产业发展中挑战的论文,所以其回答明显提取了论文中的信息与观点

在这里插入图片描述

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

下面这些都是我当初辛苦整理和花钱购买的资料,现在我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

<think>我们正在讨论如何使用ollamamaxkb和qwen3生成图片。但是,请注意:1.ollama是一个用于本地运行大型语言模型的工具,它通常专注于文本生成模型。2.maxkb(可能是MaxKB,一个知识库系统)主要用于知识库构建和问答。3.qwen3(通义千问)是一个大语言模型,目前开源的版本主要是文本模型(如Qwen-7B,Qwen-14B等),不具备图像生成能力。然而,通义千问模型有一个多模态版本(Qwen-VL)可以处理图像,但生成图像的能力还是限于文本描述到图像(类似于文生图)的生成吗?实际上,Qwen-VL是视觉语言模型,它可以理解图像和文本,但本身并不能生成图像。生成图像需要专门的文生图模型(如DALL·E,StableDiffusion等)。因此,如果我们想使用这些工具生成图片,我们可以这样考虑:-ollama:我们可以使用ollama来运行一个文本生成模型(例如Qwen)和一个图像生成模型(如果ollama支持的话)。但截至2024年7月,ollama支持的图像生成模型还不多(例如,ollama支持stable-diffusion?需要确认)。实际上,ollama官方库中并没有列出StableDiffusion模型。通常,ollama主要支持文本模型。替代方案:如果我们想通过Qwen模型来生成图像,我们可以利用Qwen的代码能力调用外部API(如DALL·E)来生成图像,但前提是Qwen模型具备调用外部工具的能力(比如函数调用)且我们有相应的API。但是,用户要求使用ollamamaxkb和qwen3。我们可以这样设想流程:1.用户向MaxKB(它可能集成了Qwen模型)提出一个需要生成图像的问题。2.MaxKB中的Qwen模型理解用户的需求,并生成一个调用图像生成模型的请求(比如生成一段代码调用DALL·EAPI,或者生成一个图像描述,然后由另一个图像生成模型处理)。3.但是,MaxKB本身是一个RAG系统,它更侧重于知识库问答,可能没有内置的图像生成功能。因此,我们需要调整思路:方法一:使用Qwen模型生成图像描述,然后使用一个独立的图像生成模型(例如StableDiffusion)来生成图像。方法二:如果Qwen-VL模型支持工具调用(functioncalling),我们可以编写一个插件(在ollama中目前可能不支持直接调用外部API)来生成图像。考虑到这些限制,我们可能需要一个独立的图像生成服务(如使用StableDiffusion的API),然后通过ollama运行的Qwen模型来调用这个服务。但是,用户明确要求使用ollamamaxkb和qwen3,所以我们可以尝试这样的架构:1.部署ollama并运行Qwen-7B(文本模型)或Qwen-VL(视觉语言模型,但注意Qwen-VL不能生成图像,只能理解图像)。2.部署MaxKB,并将ollama作为MaxKB的后端模型之一(即MaxKB可以使用ollama提供的Qwen模型进行推理)。3.但是,生成图像需要额外的图像生成模型。我们可以:a.在MaxKB中安装插件机制,允许Qwen模型调用外部图像生成API(如StableDiffusion的API)。b.或者,在Qwen模型生成的代码中,调用一个本地的图像生成服务。然而,由于ollamaMaxKB本身可能不支持直接调用图像生成模型,我们需要自己搭建一个图像生成服务。步骤示例:1.部署一个图像生成服务(例如使用StableDiffusion,可以使用HuggingFace的diffusers库)2.在MaxKB系统中,配置Qwen模型(通过ollama)并允许函数调用(如果Qwen支持的话),定义图像生成函数(调用我们部署的StableDiffusion服务)。3.当用户提出生成图像的需求时,Qwen模型会识别出需要生成图像,然后调用图像生成函数。但是,目前(2025年4月)Qwen的开源文本模型是否支持函数调用?以及如何与MaxKB集成?由于Qwen模型本身是支持函数调用的(参考通义千问的文档),因此我们可以尝试在MaxKB中配置函数调用。然而,MaxKB是否支持函数调用?根据引用[1]中提到的MaxKB工作流程,它主要是通过模型进行推理并输出文本,没有明确提到函数调用。因此,我们可能需要修改MaxKB的代码或者等待其支持函数调用。鉴于上述复杂性,对于一般用户,更简单的做法是:1.使用ollama运行Qwen模型(文本模型)来生成图像描述(prompt)或者生成调用图像生成服务的代码。2.然后,使用另一个服务(如Python脚本)接收这个图像描述,并调用本地的StableDiffusion生成图像。具体步骤:步骤1:使用ollama部署Qwen模型(例如qwen:7b)步骤2:编写一个Python脚本,该脚本:a.接收用户输入的文本b.调用ollama的Qwen模型生成一个详细的图像描述(如果用户要求生成图像,那么我们可以让Qwen模型生成一个适合输入给StableDiffusion的prompt)c.使用这个prompt调用StableDiffusion(通过HuggingFace的diffusers库)生成图像d.保存图像并返回图像路径或直接显示示例代码(概念性):首先,确保安装了ollama(并已经下载了qwen:7b模型)和diffusers库。注意:这个示例不涉及MaxKB,因为我们希望生成图像,而MaxKB主要用于问答,所以这里我们假设用户直接使用脚本。示例脚本(image_generator.py):```pythonimportollama#确保已安装ollamapython包:pipinstallollamafromdiffusersimportStableDiffusionPipelineimporttorch#初始化StableDiffusion管道pipe=StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",torch_dtype=torch.float16)pipe=pipe.to("cuda")defgenerate_prompt(user_input):#使用ollama的Qwen模型根据用户输入生成图像描述response=ollama.chat(model='qwen:7b',messages=[{'role':'user','content':f'你是一个prompt生成器。用户想生成一张图片,用户输入的是:“{user_input}”。请生成一个详细且适合StableDiffusion模型的英文prompt,并只输出这个prompt。'}])returnresponse['message']['content']defgenerate_image(prompt,output_path="output.png"):#使用StableDiffusion生成图像image=pipe(prompt).images[0]image.save(output_path)returnoutput_pathif__name__=="__main__":user_input=input("请输入你想要生成的图像描述:")prompt=generate_prompt(user_input)print(f"生成的prompt:{prompt}")image_path=generate_image(prompt)print(f"图像已保存至:{image_path}")```注意:上面的StableDiffusion模型需要较大的显存(至少4GB),如果没有GPU,可以考虑使用CPU,但速度会很慢。关于MaxKB:如果我们想在MaxKB中实现,那么需要MaxKB支持输出图像。目前MaxKB主要是文本问答,所以可能不支持直接输出图像。我们可以将图像生成作为MaxKB的一个插件功能,但这需要开发。因此,对于用户的问题,如果只是使用ollama和qwen3(文本模型),我们可以通过上述脚本方式生成图像(借助StableDiffusion)。但是,用户提到了maxkb。如果用户希望集成到MaxKB中,我们需要:1.在MaxKB中配置一个额外的“图像生成”插件。2.当用户问题涉及生成图像时,MaxKB调用Qwen模型生成prompt,然后调用我们的插件(插件再调用StableDiffusion服务)生成图像,最后将图像以URL形式返回给前端。由于MaxKB是开源的,我们可以修改其后端代码,在推理结果的处理中加入图像生成逻辑。但这需要一定的开发工作。总结:直接使用ollama和Qwen模型无法生成图像,需要配合图像生成模型(如StableDiffusion)来实现。我们可以通过编写脚本,先使用ollama的Qwen模型生成图像描述,再使用StableDiffusion生成图像。而MaxKB的集成需要额外开发。因此,针对用户的具体问题,我们给出以下步骤:步骤1:安装并启动ollama步骤2:拉取Qwen模型(例如qwen:7b)步骤3:安装StableDiffusion环境(如diffusers,transformers,torch等)步骤4:编写上述脚本然后运行脚本即可。如果用户坚持要通过MaxKB实现,那么需要深入研究MaxKB的插件开发或扩展其功能。考虑到用户询问的是具体方法和示例代码,我们提供上述脚本作为示例。注意:如果用户需要的是多模态模型(Qwen-VL)来理解图像并生成描述或回答关于图像的问题,那么可以部署Qwen-VL模型(如果ollama支持的话),但仍然不能生成图像。因此,我们的回答是:使用ollama和Qwen文本模型生成图像需要配合独立的图像生成服务,如上示例代码。注意:ollama目前支持的Qwen模型是文本模型,Qwen-VL(视觉语言模型)在ollama中可能还没有(2025年4月)。因此,如果需要视觉理解,需要确认ollama是否支持Qwen-VL。由于时间限制,我们假设ollama还不支持Qwen-VL(如果没有在ollama官方模型库中找到的话)。所以,最终方案是:用Qwen生成文本描述,然后调用StableDiffusion生成图像。希望这个回答能帮助到你。相关问题:1.如何部署StableDiffusion服务?2.如何优化Qwen模型生成的图像描述(prompt)?3.如何将图像生成功能集成到MaxKB系统中?</think> 要使用OllamaMaxKB和Qwen3组合生成图片,需要以下架构和流程,因为Qwen3本身是文本模型,不具备原生图像生成能力,但可配合图像生成模型实现该功能: ### 系统架构 ```mermaid graph LR A[用户提问] --> B[MaxKB知识库] B --> C{Ollama+Qwen3} C -->|文本Prompt| D[图像生成API] D --> E[生成图片] ``` ### 具体步骤 1. **配置Ollama运行Qwen3模型** ```bash # 拉取Qwen3模型 ollama pull qwen:7b # 启动API服务(默认端口11434) ollama serve ``` 2. **MaxKB集成Ollama** 在MaxKB配置中添加模型提供者: ```python # 示例:MaxKB模型配置 MODEL_CONFIG = { "qwen_image_generator": { "provider": "ollama", "model_name": "qwen:7b", "api_base": "http://localhost:11434" } } ``` 3. **图片生成核心逻辑** ```python import requests from PIL import Image import io # Step1: 通过Qwen3生成图片描述Prompt def generate_prompt(user_input): ollama_url = "http://localhost:11434/api/generate" payload = { "model": "qwen:7b", "prompt": f"作为AI图片提示词生成器,请为以下需求创建DALL-E风格的prompt:{user_input}", "stream": False } response = requests.post(ollama_url, json=payload) return response.json()["response"] # Step2: 调用图像生成API(例如Stable Diffusion) def generate_image(prompt): # 假设本地运行的Stable Diffusion API api_url = "http://localhost:7860/sdapi/v1/txt2img" payload = {"prompt": prompt} response = requests.post(api_url, json=payload) # 解析生成的图片 image_data = response.json()["images"][0] return Image.open(io.BytesIO(image_data)) # Step3: 完整工作流 def image_generation_workflow(user_query): prompt = generate_prompt(user_query) print(f"生成的Prompt: {prompt}") image = generate_image(prompt) image.save("output.png") return image # 使用示例 image_generation_workflow("一只穿西服的柴犬在月球上喝咖啡") ``` ### 关键技术点 1. **Prompt工程** Qwen3通过特定指令生成适合图像模型的prompt: ``` 优化prompt示例: 原始:"画一只猫" 优化:"卡通风格,蓝色眼睛的布偶猫坐在窗台上,阳光照射,4K高清,细节精致" ``` 2. **图像API选择**(任选其一) - **本地部署**:Stable Diffusion(通过`diffusers`库) - **云服务**:OpenAI DALL-E、Midjourney API - **开源方案**:SDXL-Lightning(快速生成) 3. **MaxKB中的扩展实现** 在`Reasoning`类中添加图片处理模块: ```python class ImageProcessor: def __init__(self, model): self.model = model def handle_image_request(self, query): prompt = self.model.invoke(f"IMAGE_PROMPT:{query}") image_data = call_image_api(prompt) return {"type": "image", "data": image_data} ``` ### 常见问题解决 - **中文Prompt优化问题**:在Qwen3请求中添加`"请用英文生成prompt"`指令 - **图像质量提升**:在prompt结尾追加`, 8k, masterpiece, best quality` - **超时处理**:为Ollama API设置超时参数`timeout=120` > 该方案通过组合文本模型与图像模型的优势实现了端到端的图片生成能力。实际部署时需要保证图像生成API的可用性,并对输出内容进行安全过滤[^1][^2]。 --- ### 相关问题 1. 如何优化Qwen3生成的图片提示词(Prompt)质量? 2. 在资源有限的情况下应选择哪种图像生成API? 3. 如何将生成的图片实时展示在MaxKB的前端界面? 4. 图片生成过程中可能触发哪些安全问题?如何防范?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值