今年秋招的热度简直超出预期,每天都有一波企业开启招聘通道。
阿里、字节、华为、小米等头部企业正展开激烈的“人才争夺战”,其中人工智能相关岗位的需求尤为突出。为了吸引优质人才,企业开出的薪资堪称“诚意爆表”——华为技术岗年薪36万起,字节跳动的非技术岗甚至给出了37万+的年薪。
人工智能领域的人才需求到底有多旺盛?从猎聘发布的行业报告来看,相关岗位的数量较往年直接激增6倍,市场需求的爆发力可见一斑。
▲数据来源:猎聘官方
值得注意的是,这波“人才荒”不止存在于技术岗。用户体验设计、项目管理、产品经理、AI伦理研究等非技术岗位也出现了显著的人才缺口,很多企业甚至“一岗难求”。
这意味着,无论你是理工科背景,还是文科、法律、艺术等看似“不相关”的专业,都能在这个热门行业找到适配的切入点。
一起来看看今年秋招中,人工智能领域有哪些热门岗位在招吧!
💡技术类核心缺口:
算法工程师、机器学习工程师、自然语言处理专家、深度学习工程师…
💡非技术类核心缺口:
产品经理、AI运营专员、产品设计(AI方向)、策略运营、AI合规专员…
▲百度/阿里/小红书等秋招职位
这么多机会摆在眼前,可别错过了!
1、为什么建议大家尽早入局人工智能行业?
应届生的第一份工作,往往是职业发展的“定调键”。而人工智能作为发展迅猛、前景广阔的领域,无疑是优质的职业起点👍。
优势①:风口行业,起点即高点
近几年正是人工智能领域的“黄金爆发期”,技术活力与产业影响力双双在线。
国外有ChatGPT、Bing、Gemini等现象级产品持续领跑,国内也涌现出一批“实力派”——比如大模型领域的黑马deepseek、百度文心一言、字节豆包、阿里通义千问、讯飞星火等,行业发展势头肉眼可见地蓬勃向上。
全球资本和科技巨头都在加速布局AI技术生态,试图抢占产业制高点。比如去年,AI领域的超级独角兽“月之暗面”就获得了阿里巴巴、小红书、美团、红杉中国等机构共10亿美元的融资。
“跟着资本走,职业路好走”——这句话在AI行业体现得淋漓尽致。
优势②:岗位多,offer到手更容易
人工智能人才的需求量在全球范围内都呈“陡坡式”上涨。《2023人工智能人才洞察报告》显示,2023年1-8月新发岗位量已与2022年全年持平,供需比从0.63降至0.39——这意味着,平均每2名求职者就能对应5个岗位,竞争压力远小于传统热门行业。
今年秋招中,各大企业的AI相关岗位更是“应接不暇”:
- 阿里集团:算法工程师、AI产品经理…
- 华为:数据挖掘专家、智能家居AI产品设计…
- 百度:AI产法研究、机器学习工程师…
- 小米:AI产品策略、研发工程师…
这么多机会,秋招不投一波真的会后悔!
优势③:高薪+稳发展,职业安全感拉满
找工作绕不开“薪资”二字,而AI行业在这方面堪称“佼佼者”。数据显示,2022年至2023年8月,人工智能领域平均薪资涨至46k+,涨幅达6.16%,这一涨幅远超同期多数行业。
更关键的是,相同从业年限下,AI从业者的薪资水平远超曾经的“高薪代表”互联网行业,且工作3-5年后,薪资天花板往往比传统行业高出30%以上。
此外,AI行业的“抗替代性”也更强。如今AI已能胜任画画、写作、编程、做PPT等工作,不少传统岗位面临被取代的风险。反观AI行业本身,却在持续扩大人才需求——与其担心被AI替代,不如主动加入AI浪潮,这或许是更明智的选择。
当然,对于很多同学来说,人工智能领域可能还比较陌生,但这并不妨碍你抓住这个风口——毕竟,站在行业上升期的起点,未来的可能性会远超想象。
2、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
3、为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
4、大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
适用人群
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。