18、自然语言处理中的问题生成与文本泛化技术

自然语言处理中的问题生成与文本泛化技术

在自然语言处理领域,问题生成系统和文本泛化技术是非常重要的研究方向。它们在医疗诊断、信息提取等多个领域都有着广泛的应用。本文将详细介绍这些技术的原理、方法以及相关的评估。

1. 基本概念与算法

在开始介绍问题生成系统之前,我们先了解一些基本概念。首先是 n - 元语法(n - gram)的含义,它是所有可使用上下文的最具体的共同模式。有一种简单的算法可以逐步学习特定 n - 元语法的含义:每当出现一个新的示例(上下文/短语对)(C, P) 时,就根据 C 更新 P 中每个 n - 元语法 G 的含义,即使用 Update(G, C) 过程。该过程定义如下:

Update(G, C):
    if Meaning(G) is undefined then
        Meaning(G) := C
    else
        Meaning(G) := LGG(C, Meaning(G))

此外,还有句子泛化和泛化图的概念。Galitsky 等人(2011)将其定义为一种特殊的概念图,可以从句法解析树自动构建,并支持语义分类任务。句法解析树之间的相似度度量是通过对这些树的子树列表进行泛化操作来实现的。泛化图是句法泛化级别和语义泛化级别(逻辑形式的反统一)之间映射的表示,它比传统的概念图更能准确地表示单个句子的语义。

另一种泛化表示是模式结构,它由带有描述(称为模式)的对象组成,允许对其进行半格操作。模式结构自然地源于有序数据,例如通过图同态排序的标记图。虽然模式结构可以简化为形式上下文,但有时处理前者比处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值