自然语言处理中的文本分类与聚类技术
在自然语言处理领域,文本分类和聚类是两项重要的任务,它们能够帮助我们更好地组织和理解大量的文本数据。本文将详细介绍文本分类和聚类的相关算法和模型。
文本分类算法
图神经网络
图结构主要由节点和边组成,节点与边相关联。图嵌入的目标是获得节点的低维向量表示,挖掘图中节点之间的关联,并获取潜在的上下文语义信息。在实现过程中,会保留网络的拓扑结构和节点的特征。
图神经网络模型可分为基于谱分解的方法和基于空间域的方法。这些方法在特征提取和降维方面发挥着重要作用。谱分解方法主要利用谱分解操作,而空间域方法则依赖聚合操作,通过聚合空间中相邻节点的信息来获得当前节点的表示。
图卷积网络是将卷积神经网络应用于图的模型的统称。其主要功能是聚合节点自身的特征和相邻节点的特征,以生成节点表示信息。在特征提取实现方面,图卷积网络可分为谱图卷积网络和时空域图卷积网络。
- 谱图卷积网络 :包括GCN、ChebNet、CayleyNet、AGCN和DualGCN等。其本质是通过一系列设计好的滤波器在图上聚合信号。基于谱分解,利用拉普拉斯矩阵的性质构建图的傅里叶变换。但存在一些局限性,如对图的任何更改都会导致特征基的变化,学习到的滤波器与领域相关,无法应用于不同结构的图,计算量大且复杂度极高。
- 空间域图卷积网络 :基于空间方法,近年来发展迅速。与谱图卷积网络相比,更高效、更灵活、更通用。典型代表包括GraphSage、GAT和FastGCN等。其核心思想是利用图结构中节点的关联进行信息传输。