这几天一直有朋友问「XX配置能部署多少B的模型」、「能不能部署更高精度的量化模型」等等问题,今天我们就来聊聊这个。
在开始说显存占用之前,我们先要了解一些基础信息和概念。
模型规模
本次Qwen3系列开源模型一共发布了8个不同尺寸,尺寸越大,显存占用越高。
8个模型中有6个Dense(密集)模型,2个MoE(混合专家)模型。密集模型在推理过程中会激活所有参数,而 MoE 模型则采用稀疏激活策略,每次前向传递只激活一部分专家参数,在有限的计算预算下性能更高。
量化权重
量化是指降低模型权重的数值精度,以显著减少显存占用和存储空间并可能提高推理速度的技术。未量化的模型显存占用非常高,很难本地部署。
本地部署起来最方便的Ollama,提供了三种量化权重的Qwen3模型,分别是Q4_K_M(默认)、Q8_0和FP16。
KV缓存
KV缓存是大语言模型推理过程中的一个重要技术概念。简单来说,如果没有KV缓存,每生成一个新token,整个序列的注意力都要重新计算,一次生成过程的计算量将呈指数增长。而有了KV缓存,则只需要计算新token的向量再与缓存交互即可,大大减少了计算量。
KV缓存是让大语言模型实用化的关键技术,但也是显存消耗的主要来源之一。KV缓存的大小随上下文长度线性增长,上下文越长,显存占用越高。
Qwen3系列模型原生上下文长度32K,4B及以上尺寸可扩展至128K。但这个上下文长度对消费级显卡来说不太现实,一般高端显卡(24GB+)可能只能处理8K-16K的上下文。
了解了上面三个基本信息和概念,接下来就要说到显存了。
显存占用
本地部署运行大语言模型,显存占用的构成主要来源于三部分:模型权重(包括参数规模和量化)、KV缓存、激活值与开销。
模型权重就是存储/加载模型参数所需的空间,取决于模型的参数量和使用的数值精度(即量化级别)。例如,一个 140 亿参数的模型,如果使用 FP16(半精度浮点数,每个参数 2 字节)存储,大约需要 28GB 显存。
KV缓存与以序列长度(上下文长度)、批处理大小(Batch Size)、模型维度(层数、隐藏层大小)以及缓存精度(不必与模型权重精度相同,通常为FP16 精度)等多个因素密切相关,可以按照公式VRAMkvcache≈2×层数×隐藏层维度×序列长度×批处理大小×每个值的字节数进行估算,这里就不做展开了。
激活值与开销即推理过程中中间计算结果(激活值)以及运行框架(如 CUDA 核函数、驱动程序、操作系统等)自身占用的显存,一般也就1-2G左右。
对于Qwen3系列模型,可以直接查看下面这个表格,表格中上下文长度统一按照8K计算。
例如,部署Q4_K_M的Qwen3-32B模型,所需要的显存大概为约19.8G(模型权重)+约14G(8K上下文KV缓存)+约1~2G(开销),一共大约35.3G。
当然,提前防杠一下。在实际使用过程中,上下文是根据实际情况变化并逐渐累积的,并不是一开始就直接占用掉大概14G的空间,所以即便没有达到表格中写的总需求,也并不代表一点也不能用。
但是,如果你本地部署完大模型,刚开始执行一个简单小任务就是下面这种显存拉满的状态,那大概率可以判断它后面很难支持复杂任务,最好换成尺寸更小的模型或者低精度量化模型。
另外,对于混合专家模型,需要单独补充说明一下。在显存占用方面,它和密集模型并没有太大区别,装入显存时依旧需要为全部参数分配显存空间,但因为只有一部分参数被激活并参与实际计算,推理速度会比同等显存占用的密集模型快得多。装入显存时,看总参数量;运行速度时,看激活参数量。
消费级显卡兼容
典型的消费级显卡和模型的兼容可以查看下面这张图:
理论上,对于24G显存的高端显卡来说,跟Q4_K_M量化的Qwen3-30B-A3B在显存占用上十分契合。如果你使用3090/4090,可以优先测试一下这个模型。
从参数综合来看,不同配置对本地部署Qwen3模型的选择可以参考这张图:
不同尺寸&量化权重Qwen3实际测试
依旧是上篇文章的测试题目:Qwen3值不值得普通用户本地部署?3个落地场景,30道题,300条回答,10模型大混测,豆包AI打分!
补充了不同尺寸和量化权重的Qwen3模型,供大家参考。
(PS:非严谨测试,结果仅供参考;模型名称未标明精度的即为默认Q4_K_M。)
文案项目:
总结项目:
弱智吧项目:
综合打分:
这三个项目中,综合评分依旧是全量DeepSeek-V3(硅基流动API)最高;因为加入了0.6B小模型,上篇测试中综合评分最低的GLM-4-Flash提升到倒数第三,但0.6B模型跟其他模型的差距并没有预想那么大;中间模型各位可自行参考。
测试详细内容见:https://ilovezhiwai.feishu.cn/wiki/TboCwTXPVi4vQqkHucuc7Dq4nkI
结合这几个我自己相对高频场景下的测试结果和理论数据,我个人最终会倾向选择Qwen3-14B (Q8_0)。
如何本地部署
关于本地部署的方案,个人依旧建议通过Ollama进行本地部署,操作起来十分快捷方便。
我们该怎样系统的去转行学习大模型 ?
很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!
第一不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、大模型系列视频教程(免费分享)
四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。
L5阶段:专题集丨特训篇 【录播课】
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取