lstm+随机注意力机制时间序列预测 完整代码数据

直接看视频讲解:

lstm+随机注意力机制时间序列预测 完整代码数据_哔哩哔哩_bilibili

模型原理:

随机注意力机制(Random Attention Mechanism)是一种通过引入随机性来增强传统注意力机制的变体。它通过随机选择注意力权重或注意力头,从而使模型能够更加多样化地学习不同特征,提高模型的泛化能力和鲁棒性。

核心思想:

  • 随机性引入:在传统的注意力机制中,所有的注意力头都会被用于计算最终的输出。在随机注意力机制中,部分注意力头会被随机丢弃或随机赋值,从而引入一种正则化的效果,类似于Dropout机制。
  • 增强多样性:由于每次计算注意力时使用的注意力头是随机的,这种机制可以迫使模型在不同的注意力头上学习不同的特征表示,从而增加了模型学习到的特征的多样性。

实现方法:

  1. 随机丢弃注意力头:在每次前向传播中,随机选择一部分注意力头进行丢弃,只使用剩下的注意力头进行注意力计算。
  2. 随机权重初始化:可以在每次前向传播中随机初始化部分注意力头的权重,从而使注意力计算更具随机性。

优点:

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    程序员奇奇

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值