寻找有界间隙的最大对:算法解析与实现
在处理字符串时,寻找具有特定间隙的最大对是一个常见且重要的问题。本文将详细介绍两种算法,用于在字符串中寻找有界间隙的右最大对和最大对,并分析它们的实现细节和性能。
1. 右最大对算法
我们首先介绍一种算法,用于在字符串 $S$ 中寻找具有有界间隙的所有右最大对。该算法使用 AVL 树在遍历二叉后缀树 $TB(S)$ 时跟踪叶列表中的元素。
1.1 算法步骤
算法 1 用于寻找字符串 $S$ 中具有有界间隙的所有右最大对,具体步骤如下:
1. 初始化 :构建二叉后缀树 $TB(S)$,并在每个叶子节点创建一个大小为 1 的 AVL 树,用于存储该叶子节点的索引。
2. 报告和合并 :当节点 $v$ 的两个子节点 $w_1$ 和 $w_2$ 的 AVL 树 $T_1$ 和 $T_2$ 可用时($|T_1| \leq |T_2|$),执行以下操作:
- 步骤 2a :对于 $T_1$ 中的每个元素 $p$,通过在 $T_2$ 中搜索,找到 $LL(w_2) \cap R(p, |\alpha|)$ 中的最小元素 $qr(p)$ 和 $LL(w_2) \cap L(p, |\alpha|)$ 中的最小元素 $ql(p)$。
- 步骤 2b :对于 $T_1$ 中的每个元素 $p$,调用 $Report(qr(p), p + |\alpha| + g_2(|\alpha|))$ 和 $Report(ql(p), p - |\alpha| -