3、状态反馈控制:基于反步法的系统稳定化设计

状态反馈控制:基于反步法的系统稳定化设计

1. 问题提出

在控制理论中,对于一类线性抛物型偏积分 - 微分方程(P(I)DEs)的系统稳定化问题是一个重要的研究方向。这类系统的方程如下:
[
u_t(x, t) = \varepsilon(x)u_{xx}(x, t) + b(x)u_x(x, t) + \lambda(x)u(x, t) + g(x)u(0, t) + \int_{0}^{x} f(x, y)u(y, t) dy
]
其中,(x \in (0, L)),(t > 0),边界条件为:
[
u_x(0, t) = -qu(0, t), \quad u(L, t) = U(t)
]
这里,(U(t)) 是控制输入。同时,对系统参数有如下假设:
- (\varepsilon(x) > 0),对于所有 (x \in [0, L]),且 (\varepsilon \in C^3[0, L])。
- (q \in \mathbb{R})。
- (b \in C^2[0, L])。
- (\lambda, g \in C^1[0, L])。
- (f \in C^1([0, L] \times [0, L]))。

当 (q)、(\lambda(x))、(g(x)) 或 (f(x, y)) 为较大正数,且 (U(t) = 0) 时,系统是不稳定的。因此,目标是将系统的平衡点 (u(x, t) \equiv 0) 稳定下来。

1.1 变量变换

在进行控制设计之前,引入变量变换(规范变换):
[
\bar{u}(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值