自适应控制中不同标识符设计的研究与应用
在自适应控制领域,针对偏微分方程(PDE)系统的控制设计是一个重要的研究方向。本文将介绍两种不同的标识符设计方法:基于被动标识符的确定性等价设计和基于交换标识符的确定性等价设计。
基于被动标识符的确定性等价设计
- 定理 9.2 内容 :对于任何与边界条件兼容的初始数据 (u_0, \hat{u} 0 \in H^2(\Omega)),闭环系统的经典解 ((\hat{b}, \hat{\lambda}, u, \hat{u})) 对于所有 ((x, y, z) \in \Omega, t \geq 0) 是有界的,并且 (\lim {t \to \infty} \max_{(x,y,z) \in \Omega} |u(x, y, z, t)| = 0)。
- 证明用到的不等式 :
- Poincaré 不等式:(|u| \leq d_1(\Omega) |\nabla u|)
- Agmon 不等式:(\max_{(x,y,z) \in \Omega} |u| \leq d_2(\Omega) |u| {H^1}^{1/2} |u| {H^2}^{1/2})
- 目标系统 :
- 通过变换 (\hat{w}(x, y, z, t) = \hat{u}(x, y, z, t) - \int_0^x \hat{k}(x, \xi) \hat{u}(\xi