13、自适应控制中不同标识符设计的研究与应用

自适应控制中不同标识符设计的研究与应用

在自适应控制领域,针对偏微分方程(PDE)系统的控制设计是一个重要的研究方向。本文将介绍两种不同的标识符设计方法:基于被动标识符的确定性等价设计和基于交换标识符的确定性等价设计。

基于被动标识符的确定性等价设计
  • 定理 9.2 内容 :对于任何与边界条件兼容的初始数据 (u_0, \hat{u} 0 \in H^2(\Omega)),闭环系统的经典解 ((\hat{b}, \hat{\lambda}, u, \hat{u})) 对于所有 ((x, y, z) \in \Omega, t \geq 0) 是有界的,并且 (\lim {t \to \infty} \max_{(x,y,z) \in \Omega} |u(x, y, z, t)| = 0)。
  • 证明用到的不等式
    • Poincaré 不等式:(|u| \leq d_1(\Omega) |\nabla u|)
    • Agmon 不等式:(\max_{(x,y,z) \in \Omega} |u| \leq d_2(\Omega) |u| {H^1}^{1/2} |u| {H^2}^{1/2})
  • 目标系统
    • 通过变换 (\hat{w}(x, y, z, t) = \hat{u}(x, y, z, t) - \int_0^x \hat{k}(x, \xi) \hat{u}(\xi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值