21、密码协议安全保障解读

密码协议安全保障解读

1. 可证明安全概述

在密码学领域,密码协议极易出错,其漏洞往往十分隐蔽。因此,不同背景的研究人员普遍认为,应采用形式化方法对密码协议进行安全分析。可证明安全方法应运而生,它能在“标准”且被广泛认可的复杂性理论假设(如因数分解的难解性)下证明协议的安全性。该方法通常需要提供以下三点:
- 安全目标的定义。
- 协议本身。
- 证明协议能达成目标,前提是某些标准的复杂性理论假设成立。

许多研究人员认为,所有“基本”的密码原语都应具备可证明的安全性。在可证明安全领域,也取得了一些新颖的定义理念:
- Goldwasser、Micali 等人提出了概率加密和数字签名。
- Blum - Micali 和 Yao 提出了伪随机数生成。
- Bellare、Rogaway 等人提出了认证。

2. 认证的安全定义

Bellare 和 Rogaway 率先为认证和认证密钥建立协议提出了计算模型。在该模型中,相互认证的定义理念简单而强大,即任何攻击者实际上要么像一条可信的线路,要么是一条损坏的线路,这一理念通过匹配对话的概念进行形式化。认证密钥交换的定义理念则是保护会话密钥,攻击者无法获取有关会话密钥的任何有用信息,这与概率加密的安全性形式化类似。

该模型具体讨论了四个协议:
|协议名称|协议描述|
| ---- | ---- |
|MAP1|适用于任意一组参与方的相互认证协议|
|MAP2|MAP1 的扩展,允许在其流程中对任意文本字符串进行认证|
|AKEP1|一个简单的认证密钥交换协议,使用 MAP2 进行密钥分发|

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能与未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值