网络优化方法及命名规则详解
1. 流量建模
在会话中,可能的级别数量 |L| 会被设定为低于接收器数量 |R| 的值。不过,候选树公式提供了最低的复杂度,这在分析大型网络时尤为重要。而且,候选树公式与单播和任播流量的链路 - 路径公式类似,能够通过使用各种候选树来调整模型的大小。
2. 优化方法
计算机和通信网络优化常用的方法是数学规划。在网络问题背景下制定的数学规划大多是混合整数规划(MIP)或整数规划(IP),即公式中使用的部分或全部变量为整数(二进制)。整数线性规划(ILP)常用来指代整数规划公式。实际上,解决 MIP 和 IP 问题的唯一通用精确优化方法是分支 - 限界算法,再辅以被称为分支 - 切割算法的高效增强方法。
将网络优化问题制定为数学规划后,可以使用专用的优化软件相对轻松地解决该问题。这些软件高效实现了包括单纯形法和分支 - 切割法在内的先进数学规划算法。例如,IBM ILOG CPLEX Optimizer 和 Gurobi Optimizer 是这方面最常用的软件包。数学规划方法的另一个优点是能得出最优结果。
然而,随着计算机和通信网络的发展,网络设计近年来变得更加复杂。因此,数学规划方法在网络优化问题中的主要缺点是缺乏可扩展性,即对于大量问题,精确方法无法提供最优甚至可行的结果。所以,需要其他优化方法来处理复杂问题和大规模实例,即启发式和元启发式算法。
启发式和元启发式方法是一类近似优化技术,能在合理时间内解决各种问题,但无法保证结果的最优性,而这只有精确算法才能做到。“启发式”一词源于古希腊语 “heuriskein”,意为 “发现解决问题新策略(规则)的艺术”。“元” 前缀也是希腊语,代