11、任意播流量的路由与频谱分配

任意播流量的路由与频谱分配

在弹性光网络(EON)中,路由和频谱分配(RSA)问题是一个基本的优化问题。本文将介绍在任意播流量场景下的RSA问题,并给出三种不同的模型表述,同时通过实验对这些模型的性能进行分析。

1. 问题背景与假设

在EON中,假设有r个数据中心(DC)分布在网络的某些节点上。每个DC提供相同的服务或内容,且对服务的客户端数量没有限制。所有需要在EON中分配资源的需求都是任意播需求,任意播需求d由客户端节点和比特率hd定义,分为上游需求(从客户端节点到DC节点服务器)和下游需求(从DC节点到客户端节点)。两个实现相同任意播请求的需求(下游和上游)被称为关联需求,用τ(d)表示需求d的关联需求,且关联需求d和τ(d)必须连接到同一个DC节点。

2. 模型表述
2.1 节点 - 链路模型(Node - Link Formulation)

该模型基于任意播流量的节点 - 链路表述。由于带宽需求根据DAT规则在事先未知,需要对基本模型进行修改。具体来说,特定需求所需的切片数量是传输距离和比特率的函数。

  • 参数与变量定义

    • 集合 :V(节点)、E(链路)、R(DC节点)、D(任意播需求)、DDS(任意播下游需求)、DUS(任意播上游需求)、M(调制格式)。
    • 常量 :hd(需求d的请求比特率)、bdm(调制格式m和需求d支持的最大距离范围)、adm(调制格式m和需求d支持的距离范围下限)、ndm(使用调制
资源下载链接为: https://pan.quark.cn/s/d37d4dbee12c A:计算机视觉,作为人工智能领域的关键分支,致力于赋予计算机系统 “看懂” 世界的能力,从图像、视频等视觉数据中提取有用信息并据此决策。 其发展历程颇为漫长。早期图像处理技术为其奠基,后续逐步探索三维信息提取,人工智能结合,又经历数学理论深化、机器学习兴起,直至当下深度学习引领浪潮。如今,图像生成和合成技术不断发展,让计算机视觉更深入人们的日常生活。 计算机视觉综合了图像处理、机器学习、模式识别和深度学习等技术。深度学习兴起后,卷积神经网络成为核心工具,能自动提炼复杂图像特征。它的工作流程,首先是图像获取,用相机等设备捕获视觉信息并数字化;接着进行预处理,通过滤波、去噪等操作提升图像质量;然后进入关键的特征提取和描述环节,提炼图像关键信息;之后利用这些信息训练模型,学习视觉模式和规律;最终用于模式识别、分类、对象检测等实际应用。 在实际应用中,计算机视觉用途极为广泛。在安防领域,能进行人脸识别、目标跟踪,保障公共安全;在自动驾驶领域,帮助车辆识别道路、行人、交通标志,实现安全行驶;在医疗领域,辅助医生分析医学影像,进行疾病诊断;在工业领域,用于产品质量检测、机器人操作引导等。 不过,计算机视觉发展也面临挑战。比如图像生成技术带来深度伪造风险,虚假图像和视频可能误导大众、扰乱秩序。为此,各界积极研究检测技术,以应对这一问题。随着技术持续进步,计算机视觉有望在更多领域发挥更大作用,进一步改变人们的生活和工作方式 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值