14、弹性光网络中任播、单播和组播流量的路由与频谱分配

弹性光网络中任播、单播和组播流量的路由与频谱分配

在当今的网络环境中,弹性光网络(EON)的发展为解决网络流量的高效传输提供了新的思路。本文将深入探讨 EON 中任播、单播和组播流量的路由与频谱分配问题,包括相关的模型、算法及其优势。

1. 任播和单播流量的路由与频谱分配

在 EON 中,任播流量的增益与网络中数据中心的数量密切相关。研究发现,当网络中存在更多的数据中心时,任播增益在各项性能指标上都会有所增加。与传统的波分复用(WDM)方法相比,EON 场景在光网络的关键指标(如成本、功耗和频谱使用)方面表现出色。并且,随着后续年份流量的增长,EON 方法的优势会更加明显。

2. 组播流量的路由与频谱分配

许多流行的在线网络服务,如内容分发网络、IP 电视和视频流等,都可以通过全光组播以可扩展且经济高效的方式进行配置。因此,我们着重研究 EON 中的组播问题。

2.1 组播的主要假设

为了实现光组播,网络节点配备了具有组播能力的光交叉连接(MC - OXC),它能够将输入数据流复制到多个输出。在默认的 EON 组播模型中,假设所有网络节点都具备组播能力,并且 MC - OXC 的扇出(输出信号数量)没有限制。不过,这个基本模型可以进行修改,以分析某些节点未配备 MC - OXC 或扇出有限的情况。

组播会话由源节点(根节点)、接收者集合和比特率定义。为了满足组播需求,需要在 EON 中使用具有组播能力的节点建立一个点对多点的光树连接。组播需求的频谱要求(切片数量)根据 DAT 规则确定。

2.2 组播的 ILP 模型

为了解决组播流量的路由与频谱分配

资源下载链接为: https://pan.quark.cn/s/d37d4dbee12c A:计算机视觉,作为人工智能领域的关键分支,致力于赋予计算机系统 “看懂” 世界的能力,从图像、视频等视觉数据中提取有用信息并据此决策。 其发展历程颇为漫长。早期图像处理技术为其奠基,后续逐步探索三维信息提取,人工智能结合,又经历数学理论深化、机器学习兴起,直至当下深度学习引领浪潮。如今,图像生成合成技术不断发展,让计算机视觉更深入人们的日常生活。 计算机视觉综合了图像处理、机器学习、模式识别深度学习等技术。深度学习兴起后,卷积神经网络成为核心工具,能自动提炼复杂图像特征。它的工作流程,首先是图像获取,用相机等设备捕获视觉信息并数字化;接着进行预处理,通过滤波、去噪等操作提升图像质量;然后进入关键的特征提取描述环节,提炼图像关键信息;之后利用这些信息训练模型,学习视觉模式规律;最终用于模式识别、分类、对象检测等实际应用。 在实际应用中,计算机视觉用途极为广泛。在安防领域,能进行人脸识别、目标跟踪,保障公共安全;在自动驾驶领域,帮助车辆识别道路、行人、交通标志,实现安全行驶;在医疗领域,辅助医生分析医学影像,进行疾病诊断;在工业领域,用于产品质量检测、机器人操作引导等。 不过,计算机视觉发展也面临挑战。比如图像生成技术带来深度伪造风险,虚假图像视频可能误导大众、扰乱秩序。为此,各界积极研究检测技术,以应对这一问题。随着技术持续进步,计算机视觉有望在更多领域发挥更大作用,进一步改变人们的生活工作方式 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值