16、弹性光网络中多播、单播与任播流的路由、调制和频谱分配

弹性光网络中多播、单播与任播流的路由、调制和频谱分配

1. 多播与单播流量的路由和频谱分配

在网络流量传输中,多播和单播是常见的两种方式。当总流量设定为 40 Tb/s 时,研究 US26 和 Euro28 网络中多播流量比例与所需频谱切片数量的关系。结果表明,随着多播流量比例的增加,使用多播传输相较于纯单播传输在频谱使用上的增益几乎呈线性增长。例如,当多播流量比例达到 90% 时,多播方法所需的频谱资源比单播方法大约少 70%。

2. 任播和单播流的路由、调制和频谱分配(RMSA)

RMSA 问题是经典 RSA 问题的扩展,除了路由和频谱分配外,还涉及为每个需求选择调制格式。以下是详细介绍:
- 模型公式化 :采用基于信道的方法来构建 AU/RMSA 问题的模型。
- 集合定义
- (E):链路
- (S):切片
- (D):需求(任播和单播)
- (DDS):任播下游需求
- (M):调制格式
- (P(d)):实现需求 (d) 的候选路径
- (C(d, p, m)):需求 (d) 在路径 (p) 上使用调制格式 (m) 时的候选信道
- 常量定义
- (\delta_{edp}):若链路 (e) 属于实现需求 (d) 的路径 (p),则为 1,否则为 0
- (n_{dpm}):需求 (d) 在路径 (p) 上使用调制格式 (m) 时所需的切片数量
- (\gamma_{dpcsm}):若与需求 (d) 在路径 (p)

资源下载链接为: https://pan.quark.cn/s/d37d4dbee12c A:计算机视觉,作为人工智能领域的关键分支,致力于赋予计算机系统 “看懂” 世界的能力,从图像、视频等视觉数据中提取有用信息并据此决策。 其发展历程颇为漫长。早期图像处理技术为其奠基,后续逐步探索三维信息提取,人工智能结合,又经历数学理论深化、机器学习兴起,直至当下深度学习引领浪潮。如今,图像生成合成技术不断发展,让计算机视觉更深入人们的日常生活。 计算机视觉综合了图像处理、机器学习、模式识别深度学习等技术。深度学习兴起后,卷积神经网络成为核心工具,能自动提炼复杂图像特征。它的工作程,首先是图像获取,用相机等设备捕获视觉信息并数字化;接着进行预处理,通过滤波、去噪等操作提升图像质量;然后进入关键的特征提取描述环节,提炼图像关键信息;之后利用这些信息训练模型,学习视觉模式规律;最终用于模式识别、分类、对象检测等实际应用。 在实际应用中,计算机视觉用途极为广泛。在安防领域,能进行人脸识别、目标跟踪,保障公共安全;在自动驾驶领域,帮助车辆识别道路、行人、交通标志,实现安全行驶;在医疗领域,辅助医生分析医学影像,进行疾病诊断;在工业领域,用于产品质量检测、机器人操作引导等。 不过,计算机视觉发展也面临挑战。比如图像生成技术带来深度伪造风险,虚假图像视频可能误导大众、扰乱秩序。为此,各界积极研究检测技术,以应对这一问题。随着技术持续进步,计算机视觉有望在更多领域发挥更大作用,进一步改变人们的生活工作方式 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值