覆盖网络:机器学习任务的计算系统优化与生存性保障
1. 机器学习与覆盖计算系统的背景
近年来,各类 IT 服务在工业和学术界的广泛应用,使得众多机构积累了海量数据。传统数据分析方法已难以应对新挑战和日益激烈的竞争,因为它们无法充分利用数据中的复杂知识进行智能决策。因此,机器学习方法,尤其是知识数据发现和数据挖掘技术得到了快速发展。同时,为了高效处理大量数据,时间高效的并行机器学习方法在分布式网络计算环境中变得至关重要。
2. k - 近邻算法在分类任务中的应用
分类任务(即模式识别)的主要目标是根据对象的特征将数据库中的对象归入预定义的类别。k - 近邻规则是一种基础且简单的分类算法,其核心思想是通过数据库中对象邻居的多数投票来对对象进行分类,通常使用欧几里得距离公式计算对象间的距离。该算法对单个对象进行分类的计算负载为 (O(n d)),其中 (d) 是特征向量的维度,(n) 是训练样本的数量。当 (n) 较大时,分类过程会非常耗时。不过,k - 近邻算法的优势在于其处理过程可以并行化,通过将原始数据库拆分为 (k) 个分区,在不同站点存储和处理,每个分区独立做出分类决策,最后通过多数投票或加权投票等融合方法确定最终决策。
3. 覆盖计算系统的优化模型
3.1 系统元素定义
- 集合 :
- (V):计算节点集合。
- (D):需求(客户端)集合。
- (R):数据库(数据集)集合。
- (R(d)):需求 (d) 产生请求的数据库集合。