Day18 | 669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树

669. 修剪二叉搜索树

修剪二叉搜索树

题目

给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。

所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变

思路

采用递归的方法。递归终止条件:节点为空,找到值不在区间里。

递归参数:节点,low,high

单层递归:左边遍历,右边遍历,返回根节点。

代码

class Solution {
    public TreeNode trimBST(TreeNode root, int low, int high) {
        if (root == null) {
            return root;
        }
        if (root.val > high) {
            TreeNode left = trimBST(root.left, low, high);
            return left;
        }
        if (root.val < low) {
            TreeNode right = trimBST(root.right, low, high);
            return right;
        }
        root.left = trimBST(root.left, low, high); 
        root.right = trimBST(root.right, low, high);
        return root;
    }
}

易错点

思路上:要想到遍历到值大于hign的应该继续遍历他的左子树

小于low的继续遍历他的右子树。

因为如果是两侧有单层递归处理。

108.将有序数组转换为二叉搜索树

将有序数组转换为二叉搜索树

题目

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 
平衡
 二叉搜索树。

思路

与二分查找的思想类似,本题依然采取递归的方法。

递归终止条件:左区间大于右区间

递归参数:集合,左右区间。

单层递归:

先找到左右区间的中间索引,以中间索引的值创建节点。

再向左右遍历。

代码

class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        TreeNode root = traversal(nums, 0, nums.length - 1);
        return root;
    }
    public TreeNode traversal(int[] nums, int left, int right) {
        if (left > right) return null;
        int mid = (left + right) / 2;
        TreeNode root = new TreeNode(nums[mid]);
        root.left = traversal(nums, left, mid - 1);
        root.right = traversal(nums, mid + 1, right);
        return root;
    }
}

易错点

我最开始当成需要获取值之后,通过获取的值进行构建二叉树,后来想到只需要控制索引。获取值就好。

注意区间,我采用的是左闭右闭。

538.把二叉搜索树转换为累加树

把二叉搜索树转换为累加树

题目

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

  • 节点的左子树仅包含键 小于 节点键的节点。
  • 节点的右子树仅包含键 大于 节点键的节点。
  • 左右子树也必须是二叉搜索树。

思路

本题依然采用递归去做,遍历顺序是右中左。

先定一个全局变量,从右节点开始累加,然后移动节点位置更新数值。

代码

class Solution {
    int sum = 0;
    public TreeNode convertBST(TreeNode root) {
        traversal(root);
        return root;
    }
    public void traversal(TreeNode cur) {
        if (cur == null) return;
        traversal(cur.right);
        sum += cur.val;
        cur.val = sum;
        traversal(cur.left);
    }
}

易错点

处理中的时候,需要更新遍历的值,是累加的数。

总结

二叉树章节结束啦!!完结撒花

没有量化,就没有改进。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值