669. 修剪二叉搜索树
题目
给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变
思路
采用递归的方法。递归终止条件:节点为空,找到值不在区间里。
递归参数:节点,low,high
单层递归:左边遍历,右边遍历,返回根节点。
代码
class Solution {
public TreeNode trimBST(TreeNode root, int low, int high) {
if (root == null) {
return root;
}
if (root.val > high) {
TreeNode left = trimBST(root.left, low, high);
return left;
}
if (root.val < low) {
TreeNode right = trimBST(root.right, low, high);
return right;
}
root.left = trimBST(root.left, low, high);
root.right = trimBST(root.right, low, high);
return root;
}
}
易错点
思路上:要想到遍历到值大于hign的应该继续遍历他的左子树
小于low的继续遍历他的右子树。
因为如果是两侧有单层递归处理。
108.将有序数组转换为二叉搜索树
题目
给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵
平衡
二叉搜索树。
思路
与二分查找的思想类似,本题依然采取递归的方法。
递归终止条件:左区间大于右区间
递归参数:集合,左右区间。
单层递归:
先找到左右区间的中间索引,以中间索引的值创建节点。
再向左右遍历。
代码
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
TreeNode root = traversal(nums, 0, nums.length - 1);
return root;
}
public TreeNode traversal(int[] nums, int left, int right) {
if (left > right) return null;
int mid = (left + right) / 2;
TreeNode root = new TreeNode(nums[mid]);
root.left = traversal(nums, left, mid - 1);
root.right = traversal(nums, mid + 1, right);
return root;
}
}
易错点
我最开始当成需要获取值之后,通过获取的值进行构建二叉树,后来想到只需要控制索引。获取值就好。
注意区间,我采用的是左闭右闭。
538.把二叉搜索树转换为累加树
题目
给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node
的新值等于原树中大于或等于 node.val
的值之和。
提醒一下,二叉搜索树满足下列约束条件:
- 节点的左子树仅包含键 小于 节点键的节点。
- 节点的右子树仅包含键 大于 节点键的节点。
- 左右子树也必须是二叉搜索树。
思路
本题依然采用递归去做,遍历顺序是右中左。
先定一个全局变量,从右节点开始累加,然后移动节点位置更新数值。
代码
class Solution {
int sum = 0;
public TreeNode convertBST(TreeNode root) {
traversal(root);
return root;
}
public void traversal(TreeNode cur) {
if (cur == null) return;
traversal(cur.right);
sum += cur.val;
cur.val = sum;
traversal(cur.left);
}
}
易错点
处理中的时候,需要更新遍历的值,是累加的数。
总结
二叉树章节结束啦!!完结撒花
没有量化,就没有改进。