任务最优调度

566 篇文章

已下架不支持订阅

472 篇文章

已下架不支持订阅

题目解析

本题考察贪心算法。

我的解题思路如下:

首先,我们统计出各种任务的数量,并找出数量最多的任务,比如题目用例中:

  • 任务2的数量是:3个
  • 任务3的数量是:1个

其中任务2的数量最多,有3个,我们假设k=3,那么完成所有任务所需时间至少为:

(k - 1) * (n + 1) + 1

画图示意如下:

其中n为冷却时间,k为最多任务的数量。

如果其他任务数量较少的话,可以直接在任务2的冷却时间中运行。比如题目用例运行图如下:

此时,总用时仍然为 (k - 1) * (n + 1) + 1。

理解了上面公式后,我们可以继续看下几种特殊情况:

1、数量最多的任务有多个,比如用例

2,2,2,3,3,3

已下架不支持订阅

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员阿甘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值