Manacher算法的应用
应用一:最长回文字串
最长回文字串
求一个字符串的最长回文字串,可以求每一个字符的最大回文半径;
比如说字符串Str = “a2112”;字符串长度为奇数,可以求得每个位置的回文串长度。但是对于后四位’2112‘这是一个回文字串,但是这种办法没办法得出来;所以将字符串Str写为"a#2#1#1#2",求以每个位置为中心的回文子串的长度,最后每个位置得到的回文字串长度除于2就是原始字符串所有位置回文字串的长度;这就是manacher的一个应用;
-
manacher详解
在使用manacher进行求解的过程中,需要记录几个值:1)回文半径数组 2)经过的所有回文中心中达到的最右范围 3)最右范围对应的回文中心位置 -
伪代码
//将字符串插入#,变为待处理的字符串process_Str
int R //经过的所有回文中心中达到的最右范围
int C //最右范围对应的回文中心位置
vector<>
for(int i=0;i<process_Str.size();i++)
{
if(回文中心位置i在现在的最大范围以外)
暴力拓展R
else if(回文中心位置i在现在的最大范围以内)
{
if(i的回文半径区域在L...R内)
不用计算,直接得出R不变
else if(i的回文半径区域右在L...R外的部分)
不用计算,直接得出R不变
else
从R位置开始往外扩
Str[R]是否于Str[i-(R-i)]
}
}
根据上边的思路,于纯暴力相比加速效果不错;可以根据字符串的形式,判断可以跳过判断的字符范围;
- code
#include<iostream>
#include<vector>
#include<string>
using namespace std;
string process_s(string& s)
{
string res;
for (int i = 0; i < s.size()*2+1; i++)
{
char c = (i & 1) == 0 ? '#' : s[i / 2];
res.push_back(c);
}
return res;
}
int main()
{
vector<int> R_Arr;//每个位置的回文半径
int R = -1;//表示最右边界的下一个位置,这样的话R-i就为以i为回文中心,R-1位置为回文最右元素对应的原始字符串的长度;
int C = -1;
int M = INT_MIN;//字符串的最长回文字串的长度
string in_s = "1221";
string in_str = process_s(in_s);//#1#2#2#1#
if (in_str.size() == 0)
return 0;
R_Arr.resize(in_str.size());//9
for (int i = 0; i < R_Arr.size(); i++)
{
//计算每一个回文中心可以加速的字符范围,要想知道回文中心的i的回文半径是否发生变化,只需要判断i+R_Arr[i]之后的元素就行;这行代码合并了伪代码中的四种情况
R_Arr[i] = R > i ? min(R-i,R_Arr[2*C - i]) : 1;
while (i + R_Arr[i] < in_str.size() && i - R_Arr[i] > -1)
{
if (in_str[i + R_Arr[i]] == in_str[i - R_Arr[i]])
{
R_Arr[i]++;
}
else
break;
}
if (i + R_Arr[i] > R)
{
R = i + R_Arr[i];
C = i;
}
M = max(M, R_Arr[i]);
}
cout << in_s << "的最大回文字串长度为:" << M - 1 << endl;
return 0;
}
我也表述不清楚,以后遇到了再看视频:
https://www.bilibili.com/video/BV13g41157hK?p=14