论文阅读: Character Region Awareness for Text Detection (CRAFT)

本文介绍了CRAFT论文,该方法针对文本检测问题,利用分割策略,包含字符中心概率和字符连接关系的回归。网络基于VGG16,训练数据采用概率热力图,弱监督学习用于处理标注困难,后处理使用连通域分析提取边界框。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

论文链接:https://arxiv.org/abs/1904.01941

这篇论文的主要是解决文本检测的问题,思路是利用分割的方法,与图像分割有些不同的是,CRAFT不是对整个图像进行像素级分类,而是做了回归,它有两个分支,一个是目标是字符的中心的概率(这里用概率可能不是很准确,或许说是距离字符中心的距离更好一些),另一个是字符之间的连接关系,然后经过一步后处理,得到文本的边界框。

网络结构

CRAFT的网络结构如图。看起来并不复杂,基于VGG16的结构,整体类似UNet,是一个标准的分割模型。Region Score表示该点是文字中心的概率,Affinity Score可以认为是该点是两个字之间的中心的概率。这个结构还是比较简单的,其实大部分基于分割的模型网络结构都比较简单,主要是后处理与训练数据。

在这里插入图片描述

训练数据格式

CRAFT的训练数据label不是二值化的图像,而是采用了类似热力图的的图像,这也对应了上面说的,表示的是该位置在文字中心的概率。

在这里插入图片描述

上图是训练数据的label的生成示意图。首先看左边,有了一个字符级的标注(图2的红框, Character Boxes),这个字符的四个点(图1绿边)构成一个四边形,做对角线,构成两个三角形(图1蓝边),取三角形的中心,两个框之间就有四个点,构成了一个新的边框,这个边框就是用来表示两个字符之间的连接的label的(Affinity Box

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值