- 博客(201)
- 资源 (43)
- 收藏
- 关注
原创 基于AI的科研图像生成方法探究:以Nano Banana为例
本文介绍了使用Nano Banana生成机器视觉学术配图的方法。通过输入包含机器视觉系统组成、核心特点、应用场景等详细文献信息,结合参考图的配色与风格,DeepSeek V3生成了专业英文提示词。该提示词要求绘制工业检测系统的示意图,包含硬件组件(光源、相机等)、数据处理流程(图像采集到缺陷检测)和结果分析三部分,采用蓝绿色系简约风格,突出系统协同工作原理。这种AI辅助绘图方法为科研配图提供了新思路,特别适合需要快速生成复杂系统示意图的场景。最终生成的图表符合学术发表要求,能清晰展示机器视觉"高效
2025-09-08 07:45:32
190
原创 一文掌握工业缺陷检测项目实战(Pytorch算法训练、部署、C++ DLL制作、Qt集成)
摘要:工业AI视觉检测标准化实践 本文提出一套端到端的工业AI视觉检测标准化工作流,涵盖从数据标注到模型部署全流程。核心内容包括:1)基于LabelMe工具构建标准COCO数据集;2)选用torchvision内置的Faster R-CNN模型,兼顾精度与易用性;3)采用ONNX Runtime实现跨平台高性能部署;4)通过C++动态链接库封装实现算法与应用分离。文章详细解析了Faster R-CNN两阶段检测原理,并提供了PCB缺陷检测的完整实现方案,包括环境配置、数据准备和标注指南。该方案为工业瑕疵检测
2025-09-06 19:16:37
2260
4
原创 从零打造一款专业级多光谱文档扫描与识别软件(基于 Qt 5.14 + OpenCV + FastAPI)
摘要: 本文介绍了一款基于Qt 5.14的多光谱文档扫描与识别软件开发过程。该软件旨在通过现代化界面和高效的多光谱采集设备,快速验证各类证件和文档的真伪。开发采用Qt Quick框架,集成OpenCV 4.11.0进行图像处理,并支持MSVC 2017 64位编译器。文章详细展示了从项目创建、环境配置到工程文件修改的全流程,包括Qt模块选择、OpenCV库链接及硬件通信库的集成。项目采用模块化设计,后续将逐步实现图像采集、OCR识别等功能,为开发者提供完整的实战参考。
2025-08-25 12:35:34
894
原创 Python调用硅基流动大语言模型
本文介绍了如何使用SiliconFlow API调用语言模型和图文多模态模型。首先需安装openai和pillow库。语言模型调用示例展示了如何通过DeepSeek-V3模型获取关于中国大模型行业2025年发展的分析。图文模型部分详细说明了如何将本地图片转换为WebP格式的Base64字符串,并通过GLM-4.5V模型进行OCR识别。两个示例均采用流式响应处理,支持实时输出结果。文中的代码片段可直接用于实际开发,只需替换API密钥和图片路径即可。
2025-08-24 16:30:44
290
原创 AI质检数据准备利器:基于Qt/QML 5.14的图像批量裁剪工具开发实战
本文介绍了一个基于Qt和QML开发的工业质检数据预处理工具,旨在解决AI计算机视觉项目中手动裁剪训练样本的低效问题。该工具采用前后端分离架构:C++后端负责图像加载、坐标转换和裁剪保存逻辑,QML前端实现用户交互界面。核心功能包括:1)加载高分辨率工业图像;2)通过鼠标拖拽框选目标区域;3)一键裁剪并自动保存为序列编号的JPG文件;4)自动创建输出目录并提供操作反馈。该工具可显著提升AI质检项目的数据准备效率,避免传统人工裁剪方式的重复劳动和错误风险。
2025-08-10 20:11:42
751
原创 基于Qt/QML 5.14和YOLOv8的工业异常检测Demo:冲压点智能识别
本文介绍了一个基于Qt和OpenCV的工业质检自动化Demo项目,通过YOLOv8模型实现金属件冲压点的智能检测。项目采用Qt 5.14 QML构建现代化UI界面,支持用户框选产品区域并自动识别两个关键冲压点。技术架构采用前后端分离设计:前端QML负责图像显示和交互,后端C++处理图像裁剪、ONNX模型推理等核心功能。项目重点解决了大尺寸图像处理、坐标转换、模型推理等关键技术问题,并考虑工业环境下的兼容性需求(支持Windows 7 64位系统)。该方案验证了AI技术在提升质检效率和准确性方面的潜力,为工业
2025-08-10 13:51:42
956
原创 解决docker load加载tar镜像报json no such file or directory的错误
摘要:解决Docker加载离线镜像时出现"json no such file"错误的方法是将镜像文件重新打包。具体步骤为:先用tar -xvf解压原.tar文件,删除原文件后,再用tar -cvf重新压缩当前目录所有文件。该方法有效但原因不明,推测可能是跨设备拷贝时压缩方式不一致导致的。这种重新打包的方式能确保文件结构正确,从而解决加载问题。(149字)
2025-08-05 16:36:26
359
原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——9. 接入真实硬件:驱动USB摄像头
本文介绍了将静态图像检测升级为动态视频流检测的关键技术方案。主要内容包括:1)使用Qt Multimedia模块实现USB摄像头驱动,捕获实时视频帧;2)设计多线程架构,将摄像头采集和AI推理任务放在独立工作线程,避免阻塞UI线程;3)通过QVideoFrame到cv::Mat的转换实现视频帧处理;4)构建CameraWorker类实现后台处理逻辑,通过信号槽机制与主线程通信。该方案适用于工业流水线等实时检测场景,在保证界面流畅性的同时完成动态视频分析任务。
2025-08-03 20:56:33
877
原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——8. AI赋能(下):在Qt中部署YOLOv8模型
本文介绍了如何在C++中集成ONNX模型进行AI推理,重点讲解了YOLOv8模型的加载、预处理和后处理流程。主要内容包括: 使用OpenCV DNN模块加载ONNX模型文件 图像预处理:调整尺寸、归一化、通道转换 执行模型推理获取原始输出 关键的后处理技术:解析YOLOv8输出张量,提取边界框、置信度和类别信息 非极大值抑制(NMS)处理重叠检测框 文章提供了完整的C++代码示例,展示了如何将AI模型从训练阶段过渡到实际部署应用,实现从算法研发到软件落地的关键一步。特别强调了类别名称与训练配置的一致性要求,
2025-07-30 20:23:34
1036
原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——7. AI赋能(上):训练你自己的YOLOv8瑕疵检测模型
本文介绍了如何利用YOLOv8深度学习算法实现工业螺丝表面瑕疵检测。传统OpenCV算法在处理几何特征明确的测量任务上表现优异,但在检测形态复杂的表面瑕疵时存在局限性。文章详细阐述了从传统算法向深度学习的范式转变,重点讲解了目标检测的核心概念和YOLOv8的优势。 主要内容包括: Python环境的搭建与虚拟环境配置 数据准备工作,包括对MVTec AD数据集中螺丝瑕疵的分类合并策略 使用Labelme工具进行图像标注的详细流程 将标注数据转换为YOLO格式的方法 文章特别强调了现代工业视觉检测中"
2025-07-29 21:28:25
727
原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——6. 传统算法实战:用OpenCV测量螺丝尺寸
本文介绍了如何利用OpenCV实现螺丝尺寸自动测量的视觉算法。主要内容包括:1)通过灰度转换和二值化进行图像预处理,突出目标特征;2)使用轮廓发现算法提取螺丝边界;3)计算最小外接矩形获取精确尺寸;4)将结果可视化并返回界面显示。重点讲解了cv::findContours和cv::minAreaRect等核心功能的实现方法,展示了从原始图像到几何尺寸测量的完整流程。该方案适用于工业检测中的非接触式测量场景,为后续质量判定打下基础。
2025-07-26 11:04:55
998
1
原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——5. 集成OpenCV:让程序拥有“视力”
本文介绍了在Qt项目中集成OpenCV库并实现图像显示功能的关键步骤。首先详细说明了OpenCV的安装配置过程,包括CMake文件的修改和路径设置。然后介绍了MVTec AD工业数据集的组织结构和使用方法。重点讲解了通过QQuickImageProvider构建前后端桥梁,实现了OpenCV的cv::Mat与Qt的QImage之间的格式转换。文章提供了完整的代码示例,包括ImageProvider类的实现细节,使程序能够将处理后的图像传递到QML界面显示。这些技术为后续开发AI视觉检测功能奠定了基础。
2025-07-25 21:52:40
1138
原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——4. 前后端联动:打通QML与C++的任督二脉
本文介绍了如何通过MVVM架构实现QML前端与C++后端的双向通信。首先创建了一个继承QObject的Backend类,使用Q_INVOKABLE宏使C++方法可被QML调用,并通过信号机制实现C++到QML的数据传递。然后通过设置QML上下文属性,将Backend实例注入到QML环境中。最后在QML界面中直接调用C++方法并响应状态更新信号,实现了前后端的解耦交互。这种架构模式让界面与业务逻辑分离,便于维护和扩展。
2025-07-24 20:39:25
952
3
原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——3. QML入门:像搭积木一样构建UI
本文介绍了使用Qt Quick和QML语言构建现代化用户界面的方法。首先讲解了QML的基础语法和组件结构,通过示例演示了如何创建基本UI元素并实现交互功能。随后详细介绍了布局技巧,包括使用ColumnLayout和RowLayout进行响应式设计。文章以"ScrewDetector"项目为例,展示了如何将界面划分为图像显示区、结果展示区和控制区三大功能区域,并提供了完整的QML代码实现主界面静态布局。通过属性绑定和信号处理机制,开发者可以轻松构建美观、动态的应用程序界面,同时保持前端界面
2025-07-23 20:18:05
927
原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——2. C++基础:构建程序的坚实骨架
本文介绍了Qt控制台应用开发中C++核心语法知识,重点讲解了变量与数据类型、函数封装、循环与容器三大核心内容。文章通过"AI螺丝瑕疵检测系统"案例,演示了如何使用基本数据类型、QString字符串类、qDebug输出方法;展示了如何将质检逻辑封装为可复用的函数;并利用QVector容器和for循环实现了批量产品质检功能,为后续视觉算法开发打下基础。所有示例均采用Qt控制台程序形式,便于读者专注于C++语法学习。
2025-07-22 14:05:23
979
原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——1. 启航:你的第一个工业视觉应用
本文介绍了基于Qt 6的工业AI视觉检测软件开发全流程。项目面向工业4.0需求,通过机器视觉技术实现精密元器件的自动瑕疵检测。系统采用Qt Quick构建现代化UI,集成YOLOv8深度学习模型进行实时检测,支持与PLC硬件联动和数据上报MES系统。文章详细说明了开发环境配置(Qt 6.9.1+MSVC+OpenCV)、项目创建步骤、应用程序图标设置等关键环节,并提供了完整的开源代码仓库链接。该方案可替代传统人工目检,实现高效、精准的工业质量控制自动化。
2025-07-21 20:24:24
1589
2
原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——0. 博客系列大纲
本系列教程将完整构建一个基于Qt 6的AI螺丝瑕疵检测系统,通过15篇循序渐进的文章,系统讲解从QML界面开发、C++后端逻辑、OpenCV视觉处理到YOLOv8模型部署的全流程。内容涵盖工业视觉核心功能(尺寸测量、瑕疵检测)、硬件集成(摄像头、串口通信)、数据上报(HTTP通信)以及跨平台打包部署,最终实现一个具备自动更新功能的企业级应用。每篇教程都提供可独立运行的代码示例,帮助开发者掌握从算法研发到产品落地的全栈技能。
2025-07-21 12:35:12
848
原创 AI慧眼识真伪:如何用深度学习打造一台车牌真伪自动鉴别仪
本文提出一种基于深度学习的新方法,用于快速精准鉴别机动车号牌真伪。系统采用两阶段识别流程:首先通过YOLO算法定位并分割号牌字符,然后利用孪生神经网络将分割字符与标准字体模板进行相似度比对。方案采用封闭式暗箱设计,配备高分辨率工业相机和无影光源,确保图像采集质量。相比传统人工鉴别,该方法实现了自动化、快速化的车牌真伪识别,具有显著的效率和准确性优势,为交通管理和公共安全领域提供了实用工具。
2025-07-20 20:43:13
923
原创 使用Qt6 QML/C++ 和CMake构建海康威视摄像头应用(代码开源)
本文介绍如何将海康威视USB工业相机的MFC C++ Demo移植到Qt6 QML技术栈。教程分为准备工作、项目创建、SDK集成和C++控制器封装三部分。首先需要安装Qt6、海康MVS SDK并准备相机设备。然后创建Qt Quick项目,修改CMake配置集成海康SDK,最后封装CameraController类作为QML与相机SDK的桥梁。项目采用Qt6 QML作为UI框架,C++处理业务逻辑,CMake构建系统,实现相机的发现、连接、控制和视频显示功能。完整代码已开源在GitHub。
2025-07-20 18:59:16
1318
4
原创 利用大模型来炒股靠谱么?
金融机构和科技公司也已纷纷布局金融大模型,例如华为的“盘古金融大模型”、同花顺的“HithinkGPT”等,这些模型被应用于智能投研、量化交易和风险控制等领域。虽然大模型在处理海量信息、分析市场情绪等方面展现出巨大潜力,但指望它能稳定赚钱,目前来看并不可靠,尤其是对于普通投资者而言,这其中充满了挑战和风险。同时,大模型存在“幻觉”问题,可能生成与事实不符的信息,这对于投资决策是致命的。总而言之,大语言模型在金融投资领域的应用尚处于初级阶段,对于专业机构而言,它是一个强大的辅助工具,可以提升研究和决策效率。
2025-07-17 15:38:39
850
原创 万丈高楼平地起:开发环境搭建与“Hello, World”
摘要 本文详细介绍了搭建AI质检平台开发环境的完整流程。首先列出所需工具清单,包括Qt Creator+MSVC、Visual Studio 2022、OpenCV和ONNX Runtime,并给出具体安装配置建议。重点讲解了CMake配置文件的编写方法,通过CMakeLists.txt文件实现Qt、OpenCV和ONNX Runtime三大核心库的集成管理。最后通过一个"Hello, Libraries!"测试程序验证环境搭建成功,该程序会输出各库的版本信息。文中的配置方案采用Wind
2025-07-13 21:17:46
158
原创 从一个想法到一套软件——我的AI质检平台设计蓝图
《AI质检软件平台的探索与实践》摘要:南京理工大学AI博士阿彬基于多年工业质检项目经验,发现传统项目制开发模式存在技术不可复用、成本高昂等问题,决心打造"配置而非编码"的通用AI质检平台。该平台采用C++/Qt/ONNX技术栈,包含项目管理、多源数据接口、可视化工作流引擎等六大核心模块,支持跨平台部署和多种深度学习框架。专栏将分阶段记录从开发环境搭建到平台化进阶的全过程,旨在构建一个可快速适配不同工业场景的智能质检解决方案。(149字)
2025-07-13 20:10:52
146
原创 一文掌握Qt Quick数字图像处理项目开发(基于Qt 6.9 C++和QML,代码开源)
本文介绍了一个基于Qt Quick的证照智能识别系统开发方案。该系统采用多光谱采集技术,通过白光、红外光和紫外光图像自动提取证件信息并验证真伪。项目使用Qt 6.9.1框架,结合OpenCV图像处理和云端AI识别,实现了以下核心功能:1) 简洁美观的UI界面;2) 自动化6张图像采集流程;3) 高性能图像处理;4) 云端识别结果展示。文章详细说明了开发环境配置、图标设置方法以及可重用组件设计,为证照自动化核验提供了完整的桌面端解决方案。
2025-07-06 13:47:26
1235
2
原创 从手机随拍到标准扫描件:AI如何智能校正证件照片(Python+OpenCV)
针对线上业务中用户上传的驾驶证照片常因背景杂乱、角度倾斜而导致审核效率低下的问题,本文介绍了一套无需复杂深度学习的智能预处理方案。该方案的核心是巧妙地利用OpenCV的GrabCut图像分割算法,并为其提供三个强大的先验“线索”:将图像边缘定义为“确定背景”,将中心区域和“显著性”区域(即图像中最引人注目的部分)定义为“可能前景”。通过这种“智能提示”,GrabCut能够精确地将证件从复杂背景中分离。随后,算法会自动寻找证件的四个角点,在原始高分辨率图像上进行透视校正
2025-06-26 14:02:27
1099
原创 动力书单(《风雨哈佛路》同款)
书名 (中/英)作者核心主题类型《你当像鸟飞往你的山》Educated教育带来的思想解放与阶层跨越回忆录《玻璃城堡》在功能失调的家庭中挣扎求生回忆录《风雨哈佛路》Liz Murray从无家可归到哈佛回忆录《乡下人的悲歌》J.D. Vance个人奋斗与社会观察回忆录《当幸福来敲门》绝境中的信念与父爱回忆录《走出荒野》Wild创伤后的心灵重建与自我救赎回忆录《我是马拉拉》为教育权利而战的勇气回忆录《布鲁克林有棵树》贫民窟女孩的阅读与成长小说《蝾螈会的吟唱》孤独中的自我教育与生存小说。
2025-06-24 08:40:40
682
原创 FastAPI+深度学习 打造商业级人脸识别系统 (极简实战版,代码开源)
本文介绍如何使用FastAPI构建高效的人脸识别服务。系统采用FastAPI作为后端框架,结合SQLModel进行数据库管理,并利用Dlib和ArcFace深度学习模型实现人脸检测和特征提取。内容涵盖环境配置、模型下载、项目结构设计、数据库模型定义以及核心人脸处理功能的封装。该方案性能优异、开发高效,适合构建商业级人脸识别系统。全文提供了清晰的代码示例和实现步骤,具有较高的实用参考价值。
2025-06-22 22:52:09
939
原创 香橙派:一场硬件爱好者的噩梦
经过无数个日夜的折腾和失望后,我不得不下一个结论:香橙派,就是一个硬件领域的“扶不起的阿斗”但如果你是一个学生、一个有项目交付期限的工程师,或者任何一个希望把时间花在“创造”而非“修理”上的人,那么:。邮件/在线客服:大概率你会收到一封石沉大海的回信,或者一句万能的回复:“请使用我们的官方镜像”——而那正是问题的根源。香橙派卖给你的,根本不是一个开箱即用的开发板,而是一份需要你亲自填坑的硬件调试作业。如果在折腾中遇到了问题,想寻求官方帮助,那么恭喜,你将体验到什么叫“叫天天不应,叫地地不灵”。
2025-06-19 21:38:46
621
原创 Ubuntu下使用PyTurboJPEG加速图像编解码
本文介绍了基于libjpeg-turbo的高效JPEG编解码库PyTurboJPEG的安装与性能测试。该库通过SIMD指令集优化,在纯CPU环境下编解码速度较原生libjpeg提升2-6倍。实验表明,PyTurboJPEG(2.0ms/张)比OpenCV的imdecode(2.5ms/张)图像读取速度更快,特别适合对性能要求严苛的计算机视觉应用场景。安装过程包括下载编译libjpeg-turbo和安装Python封装库PyTurboJPEG。
2025-06-12 18:44:31
534
原创 Ubuntu下编译安装DLib的GPU版本并实现人脸检测和人脸关键点检测
本文介绍了在GPU环境下安装和使用Dlib库进行人脸检测的完整流程。首先需要安装CUDA和CUDNN,然后通过pip安装依赖库。重点说明了如何从源码编译支持CUDA和AVX指令集的Dlib库,并通过测试代码验证安装成功。文章提供了完整的人脸检测和关键点检测代码示例,包括模型加载、图像预处理、人脸定位和关键点可视化等功能。测试表明,该方法在NVIDIA 3090 GPU上的检测速度达到平均26ms/帧,适用于实时人脸识别应用。
2025-06-11 18:04:56
438
原创 使用PaddleOCRv4训练自己的数据集(项目实践教程)
本文介绍了基于PaddleOCRv4的证件OCR技术开发全流程。首先概述了证件OCR技术原理和应用场景,以及PaddleOCRv4模型的特点。接着详细讲解了环境搭建(Python、PaddlePaddle和PaddleOCR安装)、数据准备(红外证件图像采集与预处理)、数据标注(使用PPOCRLabel工具)等准备工作。然后重点阐述了文字检测模型和识别模型的训练方法,包括预训练模型选择、配置文件修改、训练启动及测试评估。最后介绍了模型静态图导出和部署流程。该教程完整呈现了从数据准备到模型部署的证件OCR开发
2025-06-10 15:20:46
1557
5
原创 一文掌握工业相机选型计算
在光学系统中,物方和像方分别指实际物体和其成像所在的空间区域。工作距离包括镜头和光源到物体的距离,而视场(FOV)是视觉系统能观察到的物方范围,通常需大于实际物体尺寸以应对机械误差。光学放大倍率是像与物的大小比,与相机芯片尺寸和所需视场相关。相机芯片尺寸以英寸表示,但需转换为毫米进行计算。镜头选型的关键公式为光学放大倍率等于相机芯片长度除以视野长边,也等于焦距除以工作距离。通过实例,展示了如何根据相机配置、物距和视野大小计算并选择合适的镜头焦距。
2025-05-18 11:54:02
1521
原创 一文掌握YOLO8目标检测/关键点检测研发(NCNN C++部署,所有代码和数据开源)
分为两部分:算法研发和算法部署。算法研发环境为,算法部署环境为Windows11。考虑到算法涉及到目标检测、关键点检测场景,因此采用集成度较高的ultralytics套件进行算法研发。研发语言为Python。部署工具算法部署工具采用腾讯推出的轻量级框架NCNN来实现。考虑到最终部署场景需要兼容Windows7、Windows10、麒麟等操作系统,因此采用的桌面应用开发工具为Qt,版本为5.15.2。部署语言为C++。
2025-04-20 21:41:47
1590
原创 QT Quick(C++)跨平台应用程序项目实战教程 6 — 弹出框
Qt 中的 Popup 组件用于在应用程序界面上临时弹出一个窗口,它常作为上下文菜单、提示框或信息展示区域使用。Popup 窗口通常依附于某个父控件,在特定事件(如鼠标点击、悬停)触发时显示,能提供额外的操作选项或信息,且不影响主窗口的布局。在用户与 Popup 交互完成或触发特定条件(如点击外部区域)时,它会自动隐藏。
2025-04-03 20:09:46
730
原创 QT Quick(C++)跨平台应用程序项目实战教程 5 — 界面设计
上一章内容讲解了QML基本使用方法。本章内容继续延续“音乐播放器”项目主线,完成程序的界面设计任务。
2025-03-31 19:53:25
1214
原创 QT Quick(C++)跨平台应用程序项目实战教程 3 — 项目基本设置(窗体尺寸、中文标题、窗体图标、可执行程序图标)
上一章创建好了一个初始Qt Quick项目。本章介绍基本的项目修改方法。
2025-03-20 20:40:00
1313
原创 QT Quick(C++)跨平台应用程序项目实战教程 2 — 环境搭建和项目创建
在上一篇文章中,我们介绍了本教程的目标和结构,并简要说明了Qt Quick和C++在跨平台开发中的重要性。本文是教程的第2篇,我们将详细讲解如何搭建Qt开发环境,并创建一个Qt Quick项目。这是开发跨平台应用程序的第一步,也是至关重要的一步。首先,需要下载并安装Qt开发环境。Qt提供了一个名为Qt Online Installer的工具,可以帮助我们轻松安装Qt框架、Qt Creator IDE以及相关的工具和库。首先访问Qt官方网站并下载适用于Windows操作系统的安装包,如下图所示。如果官网下载速
2025-03-19 20:49:49
1357
原创 QT Quick(C++)跨平台应用程序项目实战教程 1 — 教程简介
本教程将带领大家从零开始,使用Qt Quick和C++开发一个跨平台的应用程序。我们将以研发一款证照识别软件为主线,在项目研发过程中逐步介绍Qt开发环境的搭建、Qt Quick的基本用法,以及如何将C++与QML结合使用。通过本教程,你将掌握如何使用Qt Quick和C++开发出高效、美观的跨平台应用程序。
2025-03-18 19:26:06
859
原创 高精度二维码识别(基于OpenCV微信扫码的解决方案)
最近接到一个需求,需要在服务器上部署二维码扫码服务,考虑到高精度和高效率需求,本文采用库实现扫码解码功能。
2025-02-25 16:25:00
2422
2
简单实用的基于python的中文OCR字符识别
2018-09-29
深度学习python安装包
2018-09-13
一款好看的展示列表(基于Bootstrap)
2019-03-22
富文本使用案例
2019-03-12
结合Django和Bootstrap开发搜索框功能(详细教程,内含源代码,Windows平台开发)
2019-03-05
根据原图和对应的alpha图提取前景并且合成新图(基于python+opencv)
2019-02-26
Windows下BPG图像官方压缩和解压缩工具
2018-09-26
完整的MFC程序打包方案(基于advanced installer)(附教程)
2019-04-03
django通过ajax实现的在线计算器程序(界面精美)
2018-12-13
testpro.rar
2020-08-14
django制作的在线计算器
2019-01-15
django操作word实现文字和图片的替换
2018-08-23
老照片修复方向论文《Contextual-Assisted Scratched Photo Restoration》
2024-11-29
PaddleLite2.12版本对应的C++库,用于开发Windows32位程序
2024-05-18
利用Python的OpenCV和Pillow实现图片加水印(效果精美)
2024-01-06
面向Windows在C++中调用Pytorch模型(MNIST手写体数字识别)
2019-11-01
vote12345.rar
2019-05-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人