机器视觉九点标定方法


前言

  • 机器视觉标定,也就是我们通常说的“手眼标定”,相机拍照的图像是基于像素坐标,而机器人用的是空间坐标系,所以手眼标定就是得到像素坐标系和机器人空间坐标系两者之间的坐标转换关系。
  • 手眼标定的作用是,建立相机坐标系和机器人坐标系之间的变换关系,即给机器人装上眼睛,让它去哪就去哪。

九点标定说明

  • 九点标定是常用的标定方法,在区域中均匀设定9个标定点,让机器人的工具末端去走这9个点得到在机器人坐标系中的坐标,同时用相机识别9个点得到像素坐标。这样就得到了9组对应的坐标,把数据代入到上述的公式中就能反推出转换系数,得出转换关系。
  • 实际上,就是将机器人的坐标系与视觉的像素坐标系相互转化。

总结

  • 这么复杂的公式看着都蒙圈,在实际操作中,其实并不需要我们来算,直接用视觉软件工具就能搞定。

  • 1.在相机视野中贴上九个Mark圆点(成九宫格排列),并且拍下这张图片保存;

  • 2.将机械手tool的中心依次移动到对准这九个Mark的中心,并记下tool对准每个Mark点中心时的机械手坐标;

  • 3.通过图像处理计算出每个Mark圆点的圆心像素坐标; 运用相关图像处理工具,计算出像素坐标和机械手坐标的转换矩阵。

    通过九点标定,可以建立相机坐标系和机械手坐标系之间的关系,从而实现视觉引导和机器人控制等应用

### 九点标定方法概述 九点标定是一种常见的机器视觉标定技术,其核心在于建立机器人坐标系与视觉像素坐标系之间的转换关系。这种方法通过在目标区域内均匀设置9个标定点,利用机器人工具末端获取这些点的实际物理坐标,并通过相机捕捉对应像素坐标[^1]。 #### 坐标系转换原理 为了完成坐标系间的映射,通常采用线性变换模型或其他更复杂的数学模型。假设存在一组已知的物理坐标 \((X_i, Y_i)\) 和对应的像素坐标 \((u_i, v_i)\),可以通过求解如下方程组获得转换矩阵: \[ \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} \] 其中 \(a, b, c, d, e, f\) 是待求解的参数。通过对采集到的9组数据应用最小二乘法优化,可计算出最优的转换系数[^3]。 --- ### C# 结合 Halcon 的实现示例 以下是基于 C# 和 Halcon 库的一个简单九点标定实现流程: #### 数据准备阶段 首先需要定义标定点的位置以及相应的像素位置。假设有以下两组数据作为输入样本: - 物理坐标 (单位:毫米): ```csharp double[,] physicalPoints = { {0, 0}, {100, 0}, {200, 0}, {0, 100}, {100, 100}, {200, 100}, {0, 200}, {100, 200}, {200, 200} }; ``` - 图像像素坐标 (单位:像素): ```csharp int[,] pixelPoints = { {50, 50}, {150, 50}, {250, 50}, {50, 150}, {150, 150}, {250, 150}, {50, 250}, {150, 250}, {250, 250} }; ``` #### 使用 Halcon 进行标定 调用 Halcon 提供的相关算子 `vector_to_proj_hom_mat2d` 来构建投影变换矩阵: ```csharp using System; using HalconDotNet; class CalibrationExample { static void Main() { HTuple[] worldCoordinates = new HTuple[] { new DTuple(physicalPoints.GetLength(0), 2), new DTuple(new double[]{ /*填充物理坐标*/ }) }; HTuple[] imageCoordinates = new HTuple[] { new DTuple(pixelPoints.GetLength(0), 2), new DTuple(new int[]{ /*填充像素坐标*/ }) }; HMatrix homographyMatrix; try { vector_to_proj_hom_mat2d(worldCoordinates, imageCoordinates, out homographyMatrix); Console.WriteLine("Homography Matrix:"); Console.WriteLine(homographyMatrix.ToString()); } catch (Exception ex) { Console.WriteLine($"Error during calibration: {ex.Message}"); } } } ``` 此代码片段展示了如何借助 Halcon 完成从世界坐标到图像坐标的齐次变换矩阵计算过程[^2]。 --- ### 注意事项 1. **精度影响因素**: 标定板的质量、光照条件变化、镜头畸变等因素都会对标定结果造成一定干扰。 2. **误差处理**: 如果测量过程中发现某些点偏差过大,则需重新调整实验环境或增加更多约束条件以提高鲁棒性。 3. **扩展功能**: 对于复杂场景下的动态物体跟踪任务,可能还需要引入时间维度上的连续帧校准机制。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨客淘金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值