力扣 518. 零钱兑换 II---Python

这篇博客讨论了如何使用动态规划算法解决硬币找零问题,即给定不同面额的硬币和一个总金额,计算组合硬币以达到该金额的方式数量。示例展示了如何处理不同输入,并给出了AC代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。

题目数据保证结果符合 32 位带符号整数。

示例 1:

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。

示例 3:

输入:amount = 10, coins = [10]
输出:1

提示:

1 <= coins.length <= 300
1 <= coins[i] <= 5000
coins 中的所有值 互不相同
0 <= amount <= 5000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/coin-change-2
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路:
该题求得是硬币组合方式,可以将硬币种类单独分开,比如只有硬币1,那么状态转移方程怎么计算,有硬币1,2状态转移方程就是分别为1,2时候dp相加。

AC代码:

class Solution(object):
    def change(self, amount, coins):
        """
        :type amount: int
        :type coins: List[int]
        :rtype: int
        """
        dp=[0]*(amount+1)
        dp[0]=1#注意这个初始条件
        for coin in coins:
            for j in range(coin,amount+1):
                dp[j]+=dp[j-coin]
        return dp[-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

细水长流者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值