信息学奥赛中的数学知识——数学期望

本文详细解释了数学期望的概念,包括其定义、计算方法及应用实例。通过具体案例,如射手射中环数的数学期望和小猪猪射箭的数学期望,帮助读者深入理解这一统计学基本概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学期望

概念

若离散型随机变量XXX的概率分布为:

XXXx1x_1x1x2x_2x2.........xix_ixi.........xnx_nxn
PPPp1p_1p1p2p_2p2.........pip_ipi.........pnp_npn

那么E(x)=x1×p1+x2×p2+...+xn×pnE(x) = x_1 × p_1 + x_2 × p_2 + ... + x_n × p_nE(x)=x1×p1+x2×p2+...+xn×pn为随机变量XXX的均值或称数学期望。

可见:

  1. 均值又称数学期望,用E(x)E(x)E(x)表示。
  2. 数学期望表示:数据取值的平均水平。

例如:某位射手,射中环数的概率分布列为:

X567
P0.40.20.4

那么,该射手的射中环数的数学期望为E(x)=5×0.4+6× 0.2+7×0.4=6E(x) = 5 \times 0.4 + 6 \times\ 0.2 + 7 \times 0.4 = 6E(x)=5×0.4+6× 0.2+7×0.4=6

例题

小猪猪喜欢射箭,已知小猪猪射中的概率为0.8,重复射击3次,每次结果相互独立,请问射中靶子的数学期望?

X0123
P(0.2)3(0.2)^3(0.2)3C31×(0.2)2×0.8C_3^1\times(0.2)^2\times0.8C31×(0.2)2×0.8C32×0.2×(0.8)2C_3^2 \times0.2\times(0.8)^2C32×0.2×(0.8)2C33×(0.8)3C_3^3\times(0.8)^3C33×(0.8)3

E(x)=0×(0.2)3+1×3× (0.2)2×0.8+2×0.2×(0.8)2+3×(0.8)3=0.096+0.768+0.512=1.376E(x) = 0 \times (0.2)^3 + 1\times 3 \times\ (0.2)^2\times0.8 +2 \times 0.2\times(0.8)^2 + 3 \times (0.8)^3= 0.096+0.768+0.512=1.376E(x)=0×(0.2)3+1×3× (0.2)2×0.8+2×0.2×(0.8)2+3×(0.8)3=0.096+0.768+0.512=1.376

解题技巧

  1. 确定取值:写出XXX可能取的全部值
  2. 求概率:XXX每个值的概率
  3. 写出XXX的分布列
  4. 由均值的定义求出E(X)E(X)E(X)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值