数学期望
概念
若离散型随机变量XXX的概率分布为:
XXX | x1x_1x1 | x2x_2x2 | ......... | xix_ixi | ......... | xnx_nxn |
---|---|---|---|---|---|---|
PPP | p1p_1p1 | p2p_2p2 | ......... | pip_ipi | ......... | pnp_npn |
那么E(x)=x1×p1+x2×p2+...+xn×pnE(x) = x_1 × p_1 + x_2 × p_2 + ... + x_n × p_nE(x)=x1×p1+x2×p2+...+xn×pn为随机变量XXX的均值或称数学期望。
可见:
- 均值又称数学期望,用E(x)E(x)E(x)表示。
- 数学期望表示:数据取值的平均水平。
例如:某位射手,射中环数的概率分布列为:
X | 5 | 6 | 7 |
---|---|---|---|
P | 0.4 | 0.2 | 0.4 |
那么,该射手的射中环数的数学期望为E(x)=5×0.4+6× 0.2+7×0.4=6E(x) = 5 \times 0.4 + 6 \times\ 0.2 + 7 \times 0.4 = 6E(x)=5×0.4+6× 0.2+7×0.4=6
例题
小猪猪喜欢射箭,已知小猪猪射中的概率为0.8,重复射击3次,每次结果相互独立,请问射中靶子的数学期望?
X | 0 | 1 | 2 | 3 |
---|---|---|---|---|
P | (0.2)3(0.2)^3(0.2)3 | C31×(0.2)2×0.8C_3^1\times(0.2)^2\times0.8C31×(0.2)2×0.8 | C32×0.2×(0.8)2C_3^2 \times0.2\times(0.8)^2C32×0.2×(0.8)2 | C33×(0.8)3C_3^3\times(0.8)^3C33×(0.8)3 |
E(x)=0×(0.2)3+1×3× (0.2)2×0.8+2×0.2×(0.8)2+3×(0.8)3=0.096+0.768+0.512=1.376E(x) = 0 \times (0.2)^3 + 1\times 3 \times\ (0.2)^2\times0.8 +2 \times 0.2\times(0.8)^2 + 3 \times (0.8)^3= 0.096+0.768+0.512=1.376E(x)=0×(0.2)3+1×3× (0.2)2×0.8+2×0.2×(0.8)2+3×(0.8)3=0.096+0.768+0.512=1.376
解题技巧
- 确定取值:写出XXX可能取的全部值
- 求概率:求XXX每个值的概率
- 写出XXX的分布列
- 由均值的定义求出E(X)E(X)E(X)