文章目录
hh
源代码
-
喜迎2024,从新开始
what is prior
指在观察到具体数据之前,基于现有的背景知识、经验和对问题的理解来设定的概率分布
Abstract & Conclusion
现存的问题
本文指出,对于微小目标,基于锚点的检测器中的盒先验和无锚点检测器中的点先验都是次优的。我们的主要观察结果是,当前基于锚点或无锚点的标签分配范式将产生许多异常的微小的地面真值样本,导致检测器对微小物体的关注减少,即在分配标签时导致尺度-样本不平衡问题。
目的
自然是为了解决存在的问题,即现有标签分配策略将产生许多异常的微小的真值样本
方法
为此,我们提出了一种基于高斯接受场的标签分配(RFLA)策略用于微小目标检测。具体来说,RFLA首先利用了特征接受野服从高斯分布的先验信息。然后,本文提出了一种新的感受野距离(RFD)来直接度量高斯感受野与真值之间的相似度,而不是使用IoU或中心采样策略来分配样本。考虑到基于ou阈值和中心采样策略倾向于大对象,作者还设计了一个基于RFD的分