Flink基本原理 + WebUI说明 + 常见问题分析

本文详细介绍了Flink,一个支持低延迟、高吞吐的开源数据处理框架,涵盖了其流式API、分布式计算、数据处理流程、JobManager和TaskManager角色、容错机制以及广泛应用的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Flink 概述

Flink 是一个用于进行大规模数据处理的开源框架,它提供了一个流式的数据处理 API,支持多种编程语言和运行时环境。Flink 的核心优点包括:

  1. 低延迟:Flink 可以在毫秒级的时间内处理数据,提供了低延迟的数据处理能力。
  2. 高吞吐:吞吐量巨大。
  3. 分布式计算:Flink 支持分布式计算,它可以在大规模集群上运行,并提供了高可用和容错机制。
  4. 流式数据处理:Flink 基于流式数据处理模型,支持实时数据处理和数据增量更新。
  5. 事件驱动:Flink 的计算引擎是基于事件驱动的,它使用消息传递机制来处理数据。

Flink 的数据处理流程

Flink 的数据处理流程包括以下几个步骤:

  1. 数据输入:Flink 可以从各种数据源中读取数据,如 Kafka、HDFS 等。
  2. 数据转换:Flink 可以使用 DataStream API 或 SQL API 对数据进行转换和处理。
  3. 数据分区:Flink 可以根据数据的属性或规则对数据进行分区,以便在分布式集群上进行处理。
  4. 数据传输:Flink 可以使用网络传输机制将数据传输到其他节点或进程。
  5. 数据输出:Flink 可以将处理后的数据写入到各种数据存储中,如 Kafka、HDFS 等。

Flink架构解析

Flink 运行时由两种类型的进程组成:一个 JobManager 和一个或者多个 TaskManager。
[图片]

JobManager

类似于司令官,分配工作给干活的士兵(TaskManager),听取士兵的汇报,当士兵失败时做出恢复等反应。
JobManager 具有许多与协调 Flink 应用程序的分布式执行有关的职责:它决定何时调度下一个 task(或一组 task)、对完成的 task 或执行失败做出反应、协调 checkpoint、并且协调从失败中恢复等等。这个进程由三个不同的组件组成:

  • ResourceManager
  • ResourceManager 负责 Flink 集群中的资源提供、回收、分配 - 它管理 task sl
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值