LangChain 联合创始人下场揭秘:如何用 LangChain 和向量数据库搞定语义搜索?

LangChain联合创始人Harrison Chase与Zilliz工程师探讨如何利用LangChain和向量数据库Milvus进行语义搜索,解决大语言模型如ChatGPT的局限性。他们讨论了检索技术在CVP架构中的作用,语义搜索的典型应用场景,如重复信息、冲突信息、时效性和元数据查询,并提供了相应解决方案。LangChain在优化Prompt和降低LLM调用成本方面发挥作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

01.

什么是检索?

02.

语义搜索——检索技术的主流用例

03.

语义搜索的典型案例

04.

问答彩蛋


近期,关于 ChatGPT 的访问量有所下降的消息引发激烈讨论,不过这并不意味着开发者对于 AIGC 的热情有所减弱,例如素有【2023 最潮大语言模型 Web 开发框架】之称的大网红 LangChain 的热度就只增不减。

原因在于 LangChain 作为大模型能力“B2B2C”的一个重要的中间站,能够将大模型和其他项目丝滑连接在一起,达到 1 + 1 大于 3 的效果。


 

正如大家所知,AIGC 时代,提高大模型应用性能的一个关键手段就是将大语言模型(LLM)和外部数据相结合。具体而言就是在 LLM 中接入现成的数据集,并要求 AI 应用能够记住用户的对话,通过“反思”对话上下文生成“新记忆”。当用户在 AI 应用中进行检索时,应用系统会先在接入的现成数据集中提取相关信息,然后结合用户查询以及记忆的上下文,最终高效准确地返回检索结果,LangChain + Milvus 就是其中最好的应用。


 

为了帮开发者深入理解使用 LangChain

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大禹智库

大禹智库——河南第一民间智库

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值