一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数。
例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数。
Input
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000) 第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
Output
如果没有符合条件的组合,输出No Solution。 第1行:1个数S表示你所选择的数的数量。 第2 - S + 1行:每行1个数,对应你所选择的数。
Input示例
8 2 5 6 3 18 7 11 19
Output示例
2 2 6
代码:
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <string>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <cmath>
#include <ctime>
using namespace std;
typedef long long ll;
typedef pair<ll, int> P;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-10;
const int maxn = 1e6+7;
const int mod = 1e9+7;
int n;
int a[maxn];
int vis[maxn];
int main()
{
scanf("%d",&n);
int res = 0;
memset(vis,-1,sizeof(vis));
for(int i = 1;i <= n;i++)
scanf("%d",&a[i]);
vis[0] = 0;
for(int i = 1;i <= n;i++){
res = (res+a[i])%n;
if(vis[res]!=-1){
printf("%d\n",i-vis[res]);
for(int j = vis[res]+1;j <= i;j++){
printf("%d\n",a[j]);
}
return 0;
}
vis[res] = i;
}
puts("No Solution");
return 0;
}
涉及知识点:
1、鸽舍定理。
2、约数倍数与mod。