【目标跟踪】CACF:Context-Aware Correlation Filter Tracking

本文介绍了CACF,一种用于目标跟踪的上下文感知相关滤波算法,旨在解决相关滤波器在处理目标形变和复杂背景时的挑战。CACF在训练阶段考虑了目标周围的背景信息,通过引入背景惩罚项改进了传统CF的目标函数,并证明了新函数的封闭解。文章讨论了上下文选择、跟踪失败预测以及算法细节,表明CACF在OTB100基准测试中取得了显著的性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR2017的oral,之前读过这篇文章,没get到oral的点在哪,今天有空又读了一遍,感觉嗯,oral还是有oral的理由的……

原文链接:Context-Aware Correlation Filter Tracking


Motivation

这篇文章还是解决的相关滤波的老问题,由于余弦窗(用来抑制边界效应的)和search region的限制,导致CF模板学不到太多的背景信息,当目标发生比较大的形变或者复杂背景干扰的时候,容易跟丢。


Contribution

针对上述问题,作者提出一种框架,显式的学习目标周围的背景信息,这种框架可以广泛地用到基于CF的跟踪算法上。


Algorithm

还是先来看一下pipeline:
这里写图片描述
上图左边是传统的CF方法,训练(training)和检测(detection)交替进行,简单直接。
右边是CACF作出的改进,可以看到,在训练阶段,作者在目标的上下左右各采了一个context area,在训练过程中,将中间的 A0 A 0 标记为正样本,将附近的上下文区域 Ai A i 标记为负样本,进行模版的训练。检测阶段与传统CF一样。

传统的CF的目标函数:
这里写图片描述
作者的改进版:
这里写图片描述
与原版相比,可以看作是加了一个惩罚项 ||A

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值