毫米波雷达如何实现目标分类——神经网络基础

本文介绍了使用神经网络进行毫米波雷达目标分类的方法,包括算法理论、激活函数的选择(ReLU、Sigmoid、Softmax)、参数初始化策略以及MATLAB的基本实现步骤。通过合适的特征选取和网络设计,可以提升分类准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、前言

二、算法理论

三、激活函数

四、参数初始化

五、基本实现(matlab)

六、处理流程


一、前言

        毫米波雷达以高适应性低识别力著称,但选择适合的分类算法依然可以达到85%甚至95%以上的准确率。一般工程做选择距离信噪比经验公式来做类型判断;置信度通过信噪比(反射强度)、跟踪命中次数及丢失次数来计算。

        之前工程中看到SVM与NN相关分类准确度比较,NN超平面学习效果比SVM提高的多。NN在分类上仍少不了传统特征分析与选取,神经元个数,层数,激活函数、损失函数设计,学习率等参数的调整。本篇基于西瓜书matlab实现最基本的NN,特征的选择。

二、算法理论

BP网络及算法如下所示:

 5.3到5.17的公式可以根据南瓜书看具体推导,这里我们可以先只关注结论即可,误差逆传播算法如下:

三、激活函数

激活函数就是在原来的线性组合的基础上加上非线性函数,让模型的表达能力更强。

ReLU(Rectified Linear Unit) - 用于隐层神经元输出,Relu实质就是个取最大值的函数

f(x) = max(0,x)。

优点:

输入是负值的情况下,它会输出0,那么神经元就不会被激活。这意味着同一时间只有部分神经元会被激活,从而使得网络很稀疏,进而对计算来说是非常有效率的。

缺点:神经元很容易“死亡”,因此需要设置较小的学习率

 Sigmoid - 用于隐层神经元输出,对于二分类的神经网络来说,最后一层的激活函数一般都是sigmoid函数。

 

 x是输入量,w是权重,b是偏移量(bias),权重w使得sigmoid函数可以调整其倾斜程度(上下),偏移量b不会改变曲线大体形状(左右)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值