Tensorflow中的损失函数loss汇总

本文总结了Tensorflow中用于回归和分类任务的常见损失函数,包括均方根误差(MSE)、平均绝对误差(MAE)、Huber Loss、sigmoid和softmax交叉熵等,并介绍了自定义损失函数的方法。对于回归问题,MSE是常用选择,但易受离群值影响;MAE则对离群值更鲁棒;Huber Loss结合了两者的优点。在分类问题中,二分类通常使用sigmoid交叉熵,多分类则选择softmax交叉熵,且提供了带权重的sigmoid交叉熵以应对样本不平衡问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归和分类是监督学习中的两个大类。自学过程中,阅读别人代码时经常看到不同种类的损失函数,到底 Tensorflow 中有多少自带的损失函数呢,什么情况下使用什么样的损失函数?这次就来汇总介绍一下。

一、处理回归问题

1.tf.losses.mean_squared_error:均方根误差(MSE) —— 回归问题中最常用的损失函数

优点是便于梯度下降,误差大时下降快,误差小时下降慢,有利于函数收敛。
缺点是受明显偏离正常范围的离群样本的影响较大

Tensorflow中集成的函数:

mse = tf.losses.mean_squared_error(y_true, y_pred)

利用Tensorflow基础函数手工实现:

mse = tf.reduce_mean(tf.square(y_true - y_pred))
2.tf.losses.absolute_difference:平均绝对误差(MAE) —— 想格外增强对离群样本的健壮性时使用

优点是其克服了 MSE 的缺点,受偏离正常范围的离群样本影响较小
缺点是收敛速度比 MSE 慢,因为当误差大或小时其都保持同等速度下降,而且在某一点处还不可导,计算机求导比较困难

maes = tf.losses.absolute_difference(y_true, y_pred)
maes_loss = tf.reduce_sum(maes)
### TensorFlow 训练过程中的损失函数TensorFlow中,损失函数对于模型训练至关重要。内置了许多常见的损失函数来适应不同的应用场景[^2]。 #### 自定义损失函数的需求与实现 当预设的损失函数无法满足特定任务需求时,则需创建自定义版本。这可以通过组合现有操作或编写新的Python函数并将其注册到图中完成。例如,在某些情况下可能希望加权不同类型的错误以反映它们的重要性差异: ```python def weighted_loss(y_true, y_pred): weights = tf.constant([0.3, 0.7]) # 权重设置 loss_per_example = (weights * ((y_true - y_pred)**2)) return tf.reduce_mean(loss_per_example) ``` 此代码展示了如何基于均方差构建带权重的损失函数[^4]。 #### 使用Sigmoid交叉熵作为特殊形式的损失函数 除了基本的形式外,有时还需要应用激活函数如`sigmoid`处理预测值后再求解交叉熵。这种做法特别适用于二分类或多标签分类问题,并且已经被集成到了框架内部供便捷调用: ```python loss_sigmoid_cross_entropy_with_logits = \ tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=logits) ``` 上述语句实现了带有Sigmoid变换后的交叉熵计算[^3]。 #### 常见问题及其解决方案 - **Q:** 如果遇到梯度消失怎么办? A: 考虑更换更合适的初始化策略或是尝试其他优化器比如AdamOptimizer;另外也可以调整学习率大小以及批次数量(batch size)等超参数配置。 - **Q:** 怎样判断所选损失函数是否合适? A: 主要依据于验证集上的表现情况而定。如果发现过拟合现象严重则可能是由于选择了过于复杂的模型结构或者是不恰当的数据增强手段造成的而非单纯由损失函数引起。 - **Q:** 是否可以在同一个网络里混合多种不同类型(回归/分类)的目标进行联合训练? A: 是可行的。只需要确保各自对应部分输出层采用相应的评估标准即可。例如在一个多任务学习场景下可分别针对各子任务设计独立的损失项并通过适当的方式汇总起来形成总的代价目标用于指导整个系统的迭代更新过程。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值