基于机器学习方法的电影推荐系统 完整代码

本文详细介绍了基于机器学习的电影推荐系统实现,包括前端UI(html5+JavaScript+jQuery+ajax)、后端服务(Java+SpringBoot+MySQL)、网络爬虫(python+BeautifulSoup)、数据处理(SQL、pandas、libFM、sklearn)和ETL(kettle)。系统采用消息队列处理用户评分和新电影信息,通过libFM和逻辑回归模型进行预测,同时利用内容相似度提供推荐。文章还展示了各模块的设计思路及运行截图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一枚爱吃大蒜的程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值