基于长短期记忆网络(LSTM)对股票价格的涨跌幅度进行预测

本文利用长短期记忆网络(LSTM)预测股票价格涨跌幅度,将股票的基本交易数据作为特征,通过LSTM进行多分类任务处理。实验表明,LSTM在预测股票涨跌上有较好的效果。数据预处理包括使用Min-Max归一化,特征工程中采用了主成分分析(PCA)降维。模型结构包含2层LSTM,训练轮数为100,输入特征维度为7,隐藏层维度为32,学习率为0.001,序列长度为5,批处理大小为64。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完整代码:https://download.csdn.net/download/qq_38735017/87536579


为对股票价格的涨跌幅度进行预测,本文使用了基于长短期记忆网络(LSTM)的方法。根据股票涨跌幅问题, 通过对股票信息作多值量化分类,将股票预测转化成一个多维函数拟合问题。将股票的历史基本交易信息作为特征输入,利用神经网络对其训练,最后对股票的涨跌幅度做分类预测。数据集为代号 510050 的上证股票,实验结果表明该模型在单纯预测涨跌的情况下有比较好的预测效果。

一、问题描述


1.1绪论


随着我国经济的快速发展,政府、投资机构以及投资者们对股票预测的需求也越来越多。因此, 对股票价格走势的分析成为越来越多研究者关注的课题。但股

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一枚爱吃大蒜的程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值