concat连接多个通道

本文介绍了 TensorFlow 中 concat 函数的使用方法,并通过实例演示了如何利用该函数连接二维及三维张量。concat 函数允许将多个张量按指定维度进行连接,适用于深度学习网络中的特征组合场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习中,经常要使用的技术之一,连接多个通道作为下一个网络层的输入。

tf.concat(concat_dim, values, name='concat')

concat_dim是tensor 连接的方向(维度),values 是要连接的tensor 链表,name是操作名。concat_dim维度可以不一样,其他维度的尺寸必须一样。

1. 两个二维tensor连接

concat_dim: 0表示行,1表示列

#!/user/bin/env python
# coding=utf-8

import tensorflow as tf

t1=[[1,2,3],[4,5,6]]
t2=[[7,8,9],[10,11,12]]
c1=tf.concat(0,[t1,t2])
c2=tf.concat(1,[t1,t2])
print c1.get_shape()
print c2.get_shape()
sess=tf.Session()
print sess.run([c1,c2])
sess.close()




2. 两个三维tensor连接

concat_dim:0表示纵向,1表示行,2表示列

#!/user/bin/env python
# coding=utf-8

import tensorflow as tf
t1=[[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]]
t2=[[[5,5,5],[6,6,6]],[[7,7,7],[8,8,8]]]
c1= tf.concat(0,[t1,t2])
c2=tf.concat(1,[t1,t2])
c3=tf.concat(2,[t1,t2])
print c1.get_shape()
print c2.get_shape()
print c3.get_shape()
sess=tf.Session()
print sess.run([c1,c2,c3])
sess.close()





















评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值