
tensorflow
文章平均质量分 64
qiqiaiairen
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
安装tensorflow
1. 输入命令$sudo apt-get upgrade$ sudo apt-get install python-pip python-dev解释一下这条命令:apt-get是从软件仓库中获取软件的一条命令,而软件仓库是Linux各大发行版的共有特征:它是一系列存放软件的服务器或网站,包含了软件包和索引文件,用户可以很轻松的使用命令自动定位并安装其中的软件,而省去了导出搜索的麻烦。转载 2016-07-30 15:20:41 · 432 阅读 · 0 评论 -
tf.Variable
class tf.Variable一个变量通过调用run() 方法维持图的状态。你通过构造variable 类的实例来添加一个变量到图中。Variable() 构造器需要一个初始值,可以是任意类型和shape 的Tensor。初始值定义了变量的type和shape。构造完成之后,变量的type和shape 是固定的。可以使用assign 方法来修改变量的值。如果你想修改变量的shape翻译 2016-11-15 16:24:12 · 22448 阅读 · 0 评论 -
tf.train.Saver
class tf.train.Saver保存和恢复变量最简单的保存和恢复模型的方法是使用tf.train.Saver 对象。构造器给graph 的所有变量,或是定义在列表里的变量,添加save 和 restore ops。saver 对象提供了方法来运行这些ops,定义检查点文件的读写路径。检查点是专门格式的二进制文件,将变量name 映射到 tensor value。检查checkp翻译 2016-11-16 11:26:11 · 34621 阅读 · 0 评论 -
Training
tf.scalar_summary(tags, values, collections=None, name=None)输出标量值的总和输入的tags 和 values 必须具有相同的shape。产生的总和有每一个tag-value 对的值。tags: 一个字符串 Tensor, Tags 为了求和values: 一个真正的数值 Tensor 。值用于求和collectio翻译 2016-11-15 15:29:26 · 642 阅读 · 0 评论 -
Summaries and TensorBoard
TensorBoard 通过读取TensorFlow 的事件文件来运行。TensorFlow的事件文件包括了你会在TensorFlow 运行中涉及到的主要数据。下面是TensorBoard 中汇总数据(Summary data)的大体生命周期。首先,创建你想汇总数据的TensorFlow 图,然后再选择你想在哪个节点进行汇总(summary)操作。比如,假设你正在训练一个卷积神经网络,用于翻译 2016-11-16 21:18:40 · 1721 阅读 · 0 评论 -
tf.app.run()
在tensorflow的demo中,都有这样的代码存在。if __name__ == "__main__": tf.app.run()源码"""Generic entry point script."""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ impo转载 2016-11-14 10:44:25 · 3850 阅读 · 0 评论 -
tf.Graph.name_scope
tf.Graph.name_scope(name)返回一个上下文管理器,为操作创建一个层级的name一个图维持一个name scope的栈。name_scope(...):声明将一个新的name放入context生命周期的一个栈中。name参数如下:一个字符串(不以'/' 结尾)将穿件一个新scope name,在这个scope中,上下文中所创建的操作前都加上name这个前原创 2016-11-14 15:03:58 · 2714 阅读 · 0 评论 -
tensorflow-Constants, Sequences, Random Values
tf.random_uniform( shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None )均匀分布#!/usr/bin/env python# coding=utf-8import numpy as npimport tensorflow as tfvar = tf.Variable(tf.r转载 2016-10-11 09:40:44 · 453 阅读 · 0 评论 -
Neural Network
tf.nn.relu(features, name=None)就算修正的线性:max(features, 0)#!/user/bin/env python# coding=utf-8import tensorflow as tfw=tf.Variable([[1.0,2.0,-0.5],[-0.9,0.1,1.2]])w_nn=tf.nn.relu(w)init=tf.ini转载 2016-11-14 15:51:32 · 441 阅读 · 0 评论 -
softmax_cross_entropy
tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels, name=None)计算logits 和 labels 之间的稀疏softmax 交叉熵度量在离散分类任务中的错误率,这些类之间是相互排斥的(每个输入只能对应唯一确定的一个类)。举例来说,每个CIFAR-10 图片只能被标记为唯一的一个标签:一张图片可能是一只狗或一翻译 2016-11-15 11:19:17 · 12499 阅读 · 1 评论 -
tf.nn.in_top_k()
tf.nn.in_top_k(predictions, targets, k, name=None)判断target 是否在top k 的预测之中。输出batch_size 大小的bool 数组,如果对目标类的预测在所有预测的top k 中,条目 out[i]=True。注意 InTopK 和 TopK 的操作是不同的。如果多个类有相同的预测值并且跨过了top-k 的边界,所有这些类都被认翻译 2016-11-16 09:32:40 · 8502 阅读 · 3 评论 -
随机训练
使用一小部分的随机数据来进行训练被称为随机训练(stochastic training),在这里更确切的说是随机梯度下降训练。在理想情况下,我们希望用我们所有的数据来进行每一步的训练,因为这能给我们更好的训练结果,但显然这需要很大的计算开销。所以,每一次训练我们可以使用不同的数据子集,这样做既可以减少计算开销,又可以最大化地学习到数据集的总体特性。转载 2016-10-20 15:07:50 · 1233 阅读 · 0 评论 -
tensorflow的基本用法
# -×-coding:utf-8-*-import tensorflow as tf#创建一个常量op,产生一个1×2矩阵。这个op被作为一个节点加到默认图中。#构造器的返回值代表该常量op的返回值matrix1=tf.constant([[3. ,3.]])#创建另外一个常量op,产生一个2×1的矩阵matrix2=tf.constant([[2.], [2.]])#创建一个转载 2016-08-06 12:09:07 · 1129 阅读 · 0 评论 -
RNN-LSTM
转载 2016-10-11 16:46:32 · 440 阅读 · 0 评论 -
Tensor
tf.Tensor.get_shape()返回一个tensor的shape。不需要启动Session,就可以返回tensor的shape信息。这可以帮助我们调试,提早发现错误信息。#!/usr/bin/env python# coding=utf-8import tensorflow as tfc=tf.constant([[1.0,2.0,3.0],[4.0,5.0,6.0]])转载 2016-10-25 09:42:06 · 606 阅读 · 0 评论 -
logistic-regression
#!/usr/bin/env python# coding=utf-8import numpy as npnum_points=100vectors_set=[]for idx in range(num_points): x1=np.random.normal(0.0, 1) y1=1 if x1*0.3+0.1+np.random.normal(0.0,0.3)>转载 2016-10-25 10:38:17 · 344 阅读 · 0 评论 -
linear-regression
#!/usr/bin/env python# coding=utf-8import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltnum_points=1000vectors_set=[]for idx in range(num_points): x1=np.random.normal(转载 2016-10-25 10:58:32 · 369 阅读 · 0 评论 -
sotmax-regression
#!/usr/bin/env python# coding=utf-8import tensorflow as tfimport input_mnistmnist=input_mnist.read_data_sets("mnist-data/",one_hot=True)print mnist.train.images.shapeprint mnist.train.labels.转载 2016-10-27 16:02:33 · 607 阅读 · 0 评论 -
tf.nn.conv2d()
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)根据4维的input和filter张量计算2维卷积input张量[batch, in_height, in_width, in_channels]filter/kernel 张量[filter_转载 2016-10-28 16:50:39 · 626 阅读 · 0 评论 -
embedding_lookup
#!/usr/bin/env python# coding=utf-8import numpy as npimport tensorflow as tfsess=tf.InteractiveSession()embedding=tf.Variable(np.identity(5,dtype=np.int32) )input_ids=tf.placeholder(dtype=tf.i转载 2016-10-20 11:06:29 · 1900 阅读 · 0 评论 -
concat连接多个通道
深度学习中,经常要使用的技术之一,连接多个通道作为下一个网络层的输入。tf.concat(concat_dim, values, name='concat')concat_dim是tensor 连接的方向(维度),values 是要连接的tensor 链表,name是操作名。concat_dim维度可以不一样,其他维度的尺寸必须一样。1. 两个二维tensor连接concat_di转载 2016-11-11 10:31:09 · 6946 阅读 · 1 评论 -
BasicLSTMCell
class BasicLSTMCell(RNNCell):基本的LSTM循环网络单元实现基于http://arxiv.org/abs/1409.2329我们添加 forget_bias (默认值为1)到遗忘门的偏置,为了减少在开始训练时遗忘的规模。它不允许单元有一个剪裁,映射层,不允许有peep-hole 连接:这是基准。对于更高级的模型,请使用 full LSTMCell翻译 2016-11-20 11:11:37 · 13499 阅读 · 0 评论