什么是期权波动率?

​波动率是用来描述标的资产(股票、指数、期货)的价格变化有多快的术语。标的资产价格波动率,在其他市场条件不变的情况下,与期权价格的变化是呈正相关关系。

标的资产价格波动率越大,期权价格涨至执行价格的可能性越大,此时期权的实值方向转化的可能性越大,权利金也会相应增加。相反,价格波动率越小、期权变为实值期权的概率越小,权利金越低。在这里插入图片描述

当我们就期权而说到波动率时,有一类波动率是重要的,就是历史波动率。历史波动率是指投资收益率在过去一段时间内所发现的波动率,它是由标的资产价值过去一段时间的历史数据统计计算而得。

提醒:由于历史波动率反映的是标的物价格过去的波动,但价格波动难以预测,利用历史波动率对价格的未来进行预测,一般都不能保证准确,只能作为参考。

历史波动率是用百分比来表示的,投资者可以说某股票的历史波动率为15%~ 20%。一只波动性非常大的股票,可能有超过100%的历史波动率。对历史波动率还可以根据不同的时段进行衡量,从而对标的股票的不同时段内的变化产生种感觉。计算10天的历史波动率、计算20天的历史波动率或60天的历史波动率等。在这里插入图片描述

上证50ETF历史波动率和计算方法

历史波动率,是指资产(assets)在过去一段时间内所表现出的波动率。与隐含波动率不同的是,它通过统计方法(method),利用资产历史价格(price)数据(data)计算(calculate)而得,也可以称其为已实现波动率,是确定性的。其计算方法可总结如下:

1、从市场上获得资产(assets),在固定时间间隔(如每天、每周或每月等)上的价格(price)。

2、对于每个时间段,求出该时间段末的与该时段初的资产价格之比的自然对数。

3、求出这些对数值的标准差,再乘以一年中包含的时段数量的平方根(如选取时间间隔为每天,若扣除闭市时间,每年中有250个交易日,应乘以根号250),得到的即为历史波动率。

如何利用波动率进行投资?

1、做多波动率策略

如果你认为波动率过低,这时候可以买入跨市价差策略或者跨宽市场价差策略。这时候如果标的资产的波动大到足够超出这个跨式或者宽跨式价差的构成成本的时候就能够获利。这种投资策略的优势在于损失是有限的,而潜在的获利是无限的,但是构建这种策略的成本比较高,因为需要同时买入认购合约和认沽合约。

标的资产价格在大部分的时候会出现小幅度波动或震荡,这种策略往往比较难战胜50ETF期权合约的时间价值的衰减,投资者可能会承受比较长时间的浮动亏损。

2、做空波动策略
在这里插入图片描述

期权做空波动率的策略主要预期未来标的价格会趋于横盘或者波动程度会趋于缩小。目前,比较常见的做空波动率策略主要包括以下三种:卖出跨市价差策略或宽跨式价差策略,该策略也是最为常用的做空波动率策略,该策略同时卖出认购和认沽期权,因而可以获取较高的权利金收益,且该策略的胜率相对较高,盈利曲线更为稳健,但该策略的潜在损失无限。

牛市或熊市价差策略,如果隐含波动率增加,则该策略组合的价值就会减少,而如果隐含波动率降低,则该策略的价值就会增加。但使用牛市或熊市价差策略需要对标的资产价格未来走势有一定的预测,即如果认为标的价格上涨使用牛市价差策略,而如果价格下跌则使用熊市价差策略。波动率反向套利策略,即卖出一份平值的长期认购期权并买入更多份的短期虚值认购期权。

### 期权波动率策略 Python 实现示例 #### 使用 `py_vollib` 库计算隐含波动率并构建简单波动率突破策略 为了实现期权波动率策略,在 Python 中可以利用 `py_vollib` 来获取市场数据中的隐含波动率,并基于此设计交易逻辑。下面是一个简单的例子,展示如何结合历史波动率与当前市场价格来决定买卖时机。 ```python from py_vollib.black_scholes.implied_volatility import implied_volatility import numpy as np import pandas as pd def calculate_implied_volatility(option_price, S, K, t, r, flag='c'): """ 计算给定参数下的隐含波动率 """ iv = implied_volatility(option_price, S, K, t, r, flag) return iv * 100 # 将结果转换成百分比形式[^1] # 假设我们有一组期权价格和其他必要输入变量的数据集 data = { 'option_prices': [17.5], # 行权价 'underlying_prices': [100], # 标的价格 'strikes': [100], # 执行价 'times_to_expiry': [0.5], # 到期时间(年) 'risk_free_rates': [0.02] # 无风险利率 } df = pd.DataFrame(data) # 添加一列用于存储计算出来的隐含波动率值 df['implied_vol'] = df.apply(lambda row: calculate_implied_volatility( option_price=row.option_prices, S=row.underlying_prices, K=row.strikes, t=row.times_to_expiry, r=row.risk_free_rates), axis=1)[^3] print(df[['implied_vol']]) ``` 这段代码展示了如何使用 `py_vollib` 库来计算单个期权合约的隐含波动率。实际应用中可能需要处理更复杂的情况,比如批量导入多个合约的信息或是考虑不同类型的期权(看涨/看跌)。此外,还可以进一步扩展这个基础框架,加入更多高级特性如滚动窗口内的平均波动率比较等,从而形成完整的波动率突破型交易策略[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qiquan2021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值