动手学深度学习 27 含并行连结的网络 GoogLeNet / Inception V3

文章详细介绍了Inception块的设计理念,它通过不同尺寸的卷积层捕获图像信息,并降低计算复杂度。GoogLeNet网络由多个阶段组成,包括stage1至stage5,逐步减小特征图尺寸,增强模型深度。该网络在深度学习领域中具有重要地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

目录

前言

一、Inception块

 二、GoogLeNet

        1.stage 1 & stage 2

        2.stage 3

         3.stage 4 & stage 5

        

总结



前言

一、Inception块

从四个路径从不同层面抽取信息 然后在通道合并层合并 

这个块使用不同窗口大小的卷积层 

通道合并层 和 输入 图片的大小等高等宽

Inception块有更少的参数个数 和 计算复杂度

 二、GoogLeNet

 

        1.stage 1 & stage 2

        

经过stage 1 和stage 2 之后 ,这里的高宽变为 28 * 28 ,可以简单的看stride的大小,即,

wide / stride 和 length / stride

        2.stage 3

         3.stage 4 & stage 5

           

         

 

总结

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值