pytorch中的顺序容器——torch.nn.Sequential

本文介绍了PyTorch中的顺序容器torch.nn.Sequential,包括其使用方式:作为顺序容器添加模块,使用OrderedDict参数,以及通过add_module函数插入模块。同时,对Sequential的源码进行了分析,探讨了初始化过程和forward函数的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.torch.nn.Sequential概要

pytorch官网对torch.nn.Sequential的描述如下。

使用方式:

# 写法一
net = nn.Sequential(
    nn.Linear(num_inputs, 1)
    # 此处还可以传入其他层
    )

# 写法二
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......

# 写法三
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
          ('linear', nn.Linear(num_inputs, 1))
          # ......
        ]))

方式一:
这是一个有顺序的容器,将特定神经网络模块按照在传入构造器的顺序依次被添加到计算图中执行。
方式二:
也可以将以特定神经网络模块为元素的有序字典(OrderedDict)为参数传入。
方式三:
也可以利用add_module函数将特定的神经网络模块插入到计算图中。add_module函数是神经网络模块的基础类(torch.nn.Module)中的方法,如下描述所示用于将子模块添加到现有模块中。

2.Sequential源码分析

先看一下初始化函数__init__,在初始化函数中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuanCruise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值