python数据清洗--数据统计

本文介绍了Python数据清洗中的数据分组运算,包括使用groupby方法进行分组计算,应用聚合函数agg进行统计分析,利用apply函数进行自定义操作,以及如何创建透视图和交叉表进行数据汇总。通过这些方法,可以有效地对数据集进行深入的统计分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 数据分组运算

在这里插入图片描述
分组计算根据某个或者某几个字段对数据集进行分组,然后运用特定的函数,得到结果
• 使用groupby方法进行分组计算,得到分组对象GroupBy
• 语法为df.groupby(by=)
• 分组对象GroupBy可以运用描述性统计方法, 如count、mean 、median、 max和min等
Group = loan_info.groupby(by = 'product’)
group1= loan_info.groupby(by = [‘product’,'jgmc’])
Group.mean()
Group.sum()
Group.max()

import pandas as pd
import numpy as np
import os
os.chdir(r'F:\CSDN\课程内容\代码和数据')
df = pd.read_csv('online_order.csv',encoding = 'gbk',dtype={'customer':str,'order':str})
df.dtypes
df.head(4)#查看数据
grouped = df.groupby('weekday') #创建分组对象,按照星期进行分组
grouped.mean() #调用方法
grouped.sum()['total_items']# 计算不同的星期,商品数量的总和
grouped = df.groupby(by =['customer','weekday'])#创建分组对象,按照用户和星期
grouped.sum()['total_items'].head(50) #调用方法,计算不同的用户周一到周天的订购商品数量的总和

2. 聚合函数使用

• 对分组对象使用agg聚合函数,agg是一个作用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值