第4章栈和队列:栈的应用——进制转换

4.4 栈的应用

经过前面的学习,我们已经掌握了栈“后进先出”的核心特性,并深入探讨了其两种物理实现——顺序栈与链栈的存储结构与基本操作。正所谓“学以致用”,理论知识唯有与实践结合方能彰显其价值。本节将利用这个看似简单的结构,解决进制转换、括号检验、表达式转换等问题。

4.4.1 进制转换

进位制又称进制,是一种记数方式,利用这种“记数法”,可以使用有限种“数字符号”来表示所有的数值。

一种进位制中可以使用的数字符号的数目,称为这种进位制的基数或底数。若一个进位制的基数为 nnn ,即可称之为 nnn 进位制,简称 nnn 进制。

下表中列出了常见进位制。

底/基数名称描述
10十进制世界上最常见的算术运算位进制系统,用于大多数机械计数器。其十位数字为 “0-9”。
12十二进制因为有多个约数如 2,3,4和 6 的易于整除性,它传统上用以表示数量和总数,如“一打”即为十二个单位。十二位数字为“0-9”,接着是“A”和“B”。
20二十进制因为有多个约数如 2,4,5 和 10 的易于整除性,在几种传统文化中的数字系统,仍然被用于计数。二十位数字为“0-9”,接着是“A-J”。
2二进制几乎所有的电子计算机内部都使用二进位制。
16十六进制用于计算机领域。十六位数字为“0-9”,接着是“A-F”。
8八进制用于计算机领域,八位数字为“0-7”。
60六十进制起源于古代苏美尔并传给巴比伦人。用作极坐标系(度,分,秒)和时间测量(小时,分钟和秒)的基础。

同一个数字,可以用不同进制表示,也就是数字可以在不同进制之间转换。进制转换的方法较多,但这不是本节重点,本节要重点讲解十进制整数向其他进制转换的一种方法,称为除余法。例如十进制的 19 转换为二进制,过程如图 4.4.1 所示:

在这里插入图片描述

图 4.4.1 十进制数转换为二进制数

用 19 对 2 做除法得到余数 1,再用商对 2 做除法得到余数 1,再用商对 2 做除法得到余数 0,……,直到最后商为 0,余数为 1。最终,用所有的余数逆序串联在一起,就是最终的结果 10011。

将上述过程联系到栈——注意栈的特点:先进后出。如果得到了第一个余数 1,把它压入到栈;再得到第二个余数 1,还入栈;得到第三个余数 0 ,继续入栈;……,直到最后的商为 0 时的余数 1 压入栈。这样所得到的栈的栈顶元素就是最后的商为 0 时的余数 1 。然后栈中的元素(余数)依次出栈,就得到了图 4.4.1 所示的结果。

这种方法,适用于将十进制向任何进制转换,例如将十进制的 100 转换为八进制,过程如图 4.4.2 所示:

在这里插入图片描述

图 4.4.2 十进制数转换为八进制数

下面以十进整数制转换为二进制为例,演示使用栈实现进制转换的算法。

【算法步骤】

  1. 初始化一个空栈 S
  2. 当十进制数 N 非零时,循环执行以下操作:
    • N 与 2 求余得到的二进制数压入栈 S;
    • N 更新为 N 与 2 的商。
  3. 当 S 非空时,循环执行以下操作:
    • 弹出栈顶元素 e
    • 输出 e

【算法描述】

本算法中的栈,使用顺序栈或者链栈均可,下面以顺序栈为例。

void conversion(int N){
    //对任意一个非负十进制数,打印输出与其等值的二进制数
    InitStack(S);  //初始化空栈 S(见 043 节)
    while(N){//当 N 非零时,循环
        Push(S, N % 2); //把 N 与 2 求余,得到的二进制数压入栈 S
        N = N / 2; //N 更新为 N 与 2 的商
    }
    while(S.top != S.base){//当栈 S 非空时
        Pop(S, e);  //栈顶元素出栈
        cout<<e;  //输出 e
    }
}

【算法分析】

  • 时间复杂度

    while(N) 循环过程按照下表统计执行次数

    循环次序N
    1N
    2N/2
    3N/22N/2^2N/22
    ⋮\vdots⋮\vdots
    rN/2r−1N/2^{r-1}N/2r1

    在 C 语言中计算 N / 2 ,其结果即为 ⌊N2r−1⌋\lfloor\frac{N}{2^{r-1}}\rfloor2r1Nwhile(N) 执行的条件是 N 非零,即 N÷2N ÷ 2N÷2 的商非零,⌊N2r−1⌋\lfloor\frac{N}{2^{r-1}}\rfloor2r1N 非零,亦即 N>2r−1N\gt2^{r-1}N>2r1 ,两边取对数得:r<log⁡2N+1r\lt\log_2N+1r<log2N+1 ,也就是循环语句执行次数的上限函数是 log⁡2N+1\log_2N+1log2N+1 。所以本算法的时间复杂度是 O(log⁡2N)O(\log_2N)O(log2N)

    如果不是转换为二进制,比如转换为 8 进制,则要执行 N = N / 8 ,于是时间复杂度为 O(log⁡8N)O(\log_8N)O(log8N)

  • 空间复杂度

    由上述分析可知,循环语句执行次数的上限是 log⁡2N+1\log_2N+1log2N+1 ,每执行一次循环语句,都会执行一次 Push(S, N % 2) 。所以,临时存储余数的栈的长度为 log⁡2N+1\log_2N+1log2N+1 ,所以空间复杂度是 O(log⁡2N)O(\log_2N)O(log2N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CS创新实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值