4.4.2 括号匹配检验
假设一个表达式中只包含左圆括号 '('
和右圆括号 ')'
,设计一个算法,借助栈来检查该表达式中括号的匹配是否正确。匹配规则是: 最晚出现的左括号,最早被匹配。即,一个右括号必须匹配其左边最近的、尚未被匹配的左括号。
栈的 “后进先出”特性完美契合了括号匹配的顺序要求。
【算法思想】
- 逐个扫描表达式中的每个字符。
- 如果遇到左括号
'('
,则将其入栈。 - 如果遇到右括号
')'
,则需要进行匹配检查:- 如果此时栈为空,说明没有左括号与之匹配,匹配失败(“右括号多余”)。
- 如果栈不为空,则从栈顶出栈一个左括号
'('
,即为与当前右括号匹配的对象。
- 当整个表达式扫描完毕后,检查栈的状态:
- 如果栈为空,说明所有左括号都找到了对应的右括号,匹配成功。
- 如果栈非空,说明还有左括号没有被匹配,匹配失败(“左括号多余”)。
【算法步骤】
- 创建一个空栈
S
。 - 从表达式的第一个字符开始,逐个扫描至最后一个字符。对其中的当前字符
ch
处理过程如下:- 若
ch
是'('
,则执行Push(S, ch)
。 - 若
ch
是')'
,则:
a. 检查栈S
是否为空。若空,则报错“匹配失败”,算法结束。
b. 否则,执行Pop(S)
(弹出栈顶的左括号,相当于完成一次匹配)。
- 若
- 表达式扫描结束后,检查栈
S
是否为空:- 若栈空,则输出“匹配成功”。
- 若栈非空,则输出“匹配失败”。
【算法描述】
// 假设已定义栈结构 Stack 及其基本操作 InitStack, Push, Pop, StackEmpty
bool BracketMatch(char *expression) {
Stack S;
InitStack(&S); // 初始化一个空栈S
int i = 0;
char ch;
// 1. 扫描表达式
while ((ch = expression[i++]) != '\0') { // 遍历直到字符串结束符
if (ch == '(') {
// 2. 遇到左括号,入栈
Push(&S, ch);
} else if (ch == ')') {
// 3. 遇到右括号
if (StackEmpty(S)) {
// 3a. 栈为空,说明右括号多余
printf("匹配失败:右括号多余\n");
return false;
} else {
// 3b. 栈非空,弹出栈顶左括号与之匹配
Pop(&S);
}
}
}
// 4. 最终检查栈是否为空
if (StackEmpty(S)) {
printf("匹配成功!\n");
return true;
} else {
printf("匹配失败:左括号多余\n");
return false;
}
}
【算法分析】
-
时间复杂度:O(n)O(n)O(n)
-
空间复杂度:O(n)O(n)O(n)
空间复杂度主要取决于栈
S
在最坏情况下需要占用的最大空间。
【示例演算】
以表达式 "(()())"
为例:
当前字符 | 操作 | 栈内容 (底->顶) | 说明 |
---|---|---|---|
'(' | Push ‘(’ | ['('] | 左括号入栈 |
'(' | Push ‘(’ | ['(', '('] | 左括号入栈 |
')' | Pop -> 匹配成功 | ['('] | 弹出栈顶的 ‘(’ 与之匹配 |
'(' | Push ‘(’ | ['(', '('] | 左括号入栈 |
')' | Pop -> 匹配成功 | ['('] | 弹出栈顶的 ‘(’ 与之匹配 |
')' | Pop -> 匹配成功 | [] | 弹出栈顶的 ‘(’ 与之匹配 |
结束 | 检查栈:空 | [] | 最终结果:匹配成功 |
这个例子清晰地展示了栈如何通过 LIFO 的特性来确保最近打开的括号最先被关闭。
此算法的流程控制简单,而且便于推广至多类括号并存的场合。它自左向右逐个考查各字符, 忽略所有非括号字符。凡遇到左括号,无论属于哪类均统一压入栈中。若遇右括号,则弹出栈顶的左括号并与之比对。若二者属于同类,则继续检查下一字符;否则,即可断定表达式不匹配。 当然,栈提前变空或者表达式扫描结束后栈非空,也意味着不匹配。
除了上述算法之外,还可以使用分治法解决括号匹配问题,第 5 章将对此方法以及用递归实现的具体过程给予详解。