第4章栈和队列:栈的应用——括号匹配检验

4.4.2 括号匹配检验

假设一个表达式中只包含左圆括号 '(' 和右圆括号 ')',设计一个算法,借助栈来检查该表达式中括号的匹配是否正确。匹配规则是: 最晚出现的左括号,最早被匹配。即,一个右括号必须匹配其左边最近的、尚未被匹配的左括号。

栈的 “后进先出”特性完美契合了括号匹配的顺序要求。

【算法思想】

  1. 逐个扫描表达式中的每个字符。
  2. 如果遇到左括号 '(',则将其入栈。
  3. 如果遇到右括号 ')',则需要进行匹配检查:
    • 如果此时栈为空,说明没有左括号与之匹配,匹配失败(“右括号多余”)。
    • 如果栈不为空,则从栈顶出栈一个左括号 '(',即为与当前右括号匹配的对象。
  4. 当整个表达式扫描完毕后,检查栈的状态:
    • 如果栈为空,说明所有左括号都找到了对应的右括号,匹配成功。
    • 如果栈非空,说明还有左括号没有被匹配,匹配失败(“左括号多余”)。

【算法步骤】

  1. 创建一个空栈 S
  2. 从表达式的第一个字符开始,逐个扫描至最后一个字符。对其中的当前字符 ch 处理过程如下:
    • ch'(',则执行 Push(S, ch)
    • ch')',则:
      a. 检查栈 S 是否为空。若空,则报错“匹配失败”,算法结束。
      b. 否则,执行 Pop(S)(弹出栈顶的左括号,相当于完成一次匹配)。
  3. 表达式扫描结束后,检查栈 S 是否为空:
    • 若栈空,则输出“匹配成功”。
    • 若栈非空,则输出“匹配失败”。

【算法描述】

// 假设已定义栈结构 Stack 及其基本操作 InitStack, Push, Pop, StackEmpty
bool BracketMatch(char *expression) {
    Stack S;
    InitStack(&S); // 初始化一个空栈S
    int i = 0;
    char ch;

    // 1. 扫描表达式
    while ((ch = expression[i++]) != '\0') { // 遍历直到字符串结束符
        if (ch == '(') {
            // 2. 遇到左括号,入栈
            Push(&S, ch);
        } else if (ch == ')') {
            // 3. 遇到右括号
            if (StackEmpty(S)) {
                // 3a. 栈为空,说明右括号多余
                printf("匹配失败:右括号多余\n");
                return false;
            } else {
                // 3b. 栈非空,弹出栈顶左括号与之匹配
                Pop(&S);
            }
        }
    }

    // 4. 最终检查栈是否为空
    if (StackEmpty(S)) {
        printf("匹配成功!\n");
        return true;
    } else {
        printf("匹配失败:左括号多余\n");
        return false;
    }
}

【算法分析】

  1. 时间复杂度:O(n)O(n)O(n)

  2. 空间复杂度:O(n)O(n)O(n)

    空间复杂度主要取决于栈 S 在最坏情况下需要占用的最大空间。

【示例演算】

以表达式 "(()())" 为例:

当前字符操作栈内容 (底->顶)说明
'('Push ‘(’['(']左括号入栈
'('Push ‘(’['(', '(']左括号入栈
')'Pop -> 匹配成功['(']弹出栈顶的 ‘(’ 与之匹配
'('Push ‘(’['(', '(']左括号入栈
')'Pop -> 匹配成功['(']弹出栈顶的 ‘(’ 与之匹配
')'Pop -> 匹配成功[]弹出栈顶的 ‘(’ 与之匹配
结束检查栈:空[]最终结果:匹配成功

这个例子清晰地展示了栈如何通过 LIFO 的特性来确保最近打开的括号最先被关闭。

此算法的流程控制简单,而且便于推广至多类括号并存的场合。它自左向右逐个考查各字符, 忽略所有非括号字符。凡遇到左括号,无论属于哪类均统一压入栈中。若遇右括号,则弹出栈顶的左括号并与之比对。若二者属于同类,则继续检查下一字符;否则,即可断定表达式不匹配。 当然,栈提前变空或者表达式扫描结束后栈非空,也意味着不匹配。

除了上述算法之外,还可以使用分治法解决括号匹配问题,第 5 章将对此方法以及用递归实现的具体过程给予详解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CS创新实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值