人工智能学习64-Yolo样本处理

人工智能学习64-Yolo样本处理—快手视频
人工智能学习65-Yolo样本处理—快手视频

Yolo算法样本格式

Yolo算法样本数据采用VOC数据规范,初学者可以直接下载使用,也可以按照VOC数据规范补充自己的样本数据,训练自己的Yolo网络模型,目录结构如下图:
在这里插入图片描述
目录VOC2007/Annotations中存放XML描述文件,XML文件名称与图片文件同名,XML文件内容如下图:
在这里插入图片描述
目录VOC2007/JPEGImages中存放图片文件,图片文件扩展名为jpg,图片文件大小不限制,网络训练时统一转化为416*416。
目录VOC2007/ImageSets/Main中存放训练文件、验证文件、训练测试文件的索引信息,如下图:
在这里插入图片描述

物体种类配置文件

Yolo算法可以训练两类模型,一是20类物种模型,二是80类物种模型。20类物种模型配置文件在/model_data/voc_classes.txt;80类物种模型配置文件在/model_data/coco_classes.txt。如果新增自己样本,需要修改这两个文件内容。

补充样本数据步骤

将图片文件复制到VOC2007/JPEGImages目录下,文件扩展名必须为jpg。在VOC2007/Annotations目录新建与图片文件同名的XML文件,按照如下数据修改XML文件内容。

<annotation>
    <folder>VOC2007</folder>
    <filename>000001.jpg</filename>
    <source>
       <database>The VOC2007 Database</database>
       <annotation>PASCAL VOC2007</annotation>
       <image>flickr</image>
       <flickrid>341012865</flickrid>
    </source>
    <owner>
       <flickrid>Fried Camels</flickrid>
       <name>Jinky the Fruit Bat</name>
    </owner>
    <size>
       <width>353</width>
       <height>500</height>
       <depth>3</depth>
    </size>
    <segmented>0</segmented>
    <object>
       <name>dog</name>
       <pose>Left</pose>
       <truncated>1</truncated>
       <difficult>0</difficult>
       <bndbox>
          <xmin>48</xmin>
          <ymin>240</ymin>
          <xmax>195</xmax>
          <ymax>371</ymax>
       </bndbox>
    </object>
    <object>
       <name>person</name>
       <pose>Left</pose>
       <truncated>1</truncated>
       <difficult>0</difficult>
       <bndbox>
          <xmin>8</xmin>
          <ymin>12</ymin>
          <xmax>352</xmax>
          <ymax>498</ymax>
       </bndbox>
    </object>
</annotation>

使用Window画板或其他工具,在新增图片中使用Box标明物体坐标与种类,如下图:
在这里插入图片描述
Box框定物种分类需要从/model_data/coco_classes.txt或/model_data/voc_classes.txt查找,如果是新增物种,需要修改这两个配置文件。

使用脚本生成训练和测试配置文件

运行脚本voc_annotation.py,在根目录下生成两个配置文件2007_train.txt和2007_val.txt。
voc_annotation.py文件内容

import os
import random
import xml.etree.ElementTree as ET

import numpy as np

from utils import get_classes

#--------------------------------------------------------------------------------------------------------------------------------#
#   annotation_mode用于指定该文件运行时计算的内容
#   annotation_mode为0代表整个标签处理过程,包括获得VOCdevkit/VOC2007/ImageSets里面的txt以及训练用的2007_train.txt、2007_val.txt
#   annotation_mode为1代表获得VOCdevkit/VOC2007/ImageSets里面的txt
#   annotation_mode为2代表获得训练用的2007_train.txt、2007_val.txt
#--------------------------------------------------------------------------------------------------------------------------------#
annotation_mode     = 0
#-------------------------------------------------------------------#
#   必须要修改,用于生成2007_train.txt、2007_val.txt的目标信息
#   与训练和预测所用的classes_path一致即可
#   如果生成的2007_train.txt里面没有目标信息
#   那么就是因为classes没有设定正确
#   仅在annotation_mode为0和2的时候有效
#-------------------------------------------------------------------#
classes_path        = '../model_data/coco_classes.txt' #原来是:voc_classes.txt, coco_classes.txt
#--------------------------------------------------------------------------------------------------------------------------------#
#   trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1
#   train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1
#   仅在annotation_mode为0和1的时候有效
#--------------------------------------------------------------------------------------------------------------------------------#
trainval_percent    = 0.9
train_percent       = 0.9
#-------------------------------------------------------#
#   指向VOC数据集所在的文件夹
#   默认指向根目录下的VOC数据集
#-------------------------------------------------------#
VOCdevkit_path  = '../VOCdevkit'

VOCdevkit_sets  = [('2007', 'train'), ('2007', 'val')]
classes, _      = get_classes(classes_path)

#-------------------------------------------------------#
#   统计目标数量
#-------------------------------------------------------#
photo_nums  = np.zeros(len(VOCdevkit_sets))
nums        = np.zeros(len(classes))
def convert_annotation(year, image_id, list_file):
    in_file = open(os.path.join(VOCdevkit_path, 'VOC%s/Annotations/%s.xml'%(year, image_id)), encoding='utf-8')
    tree=ET.parse(in_file)
    root = tree.getroot()

    for obj in root.iter('object'):
        difficult = 0 
        if obj.find('difficult')!=None:
            difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult)==1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (int(float(xmlbox.find('xmin').text)), int(float(xmlbox.find('ymin').text)), int(float(xmlbox.find('xmax').text)), int(float(xmlbox.find('ymax').text)))
        list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))
        
        nums[classes.index(cls)] = nums[classes.index(cls)] + 1
        
if __name__ == "__main__":
    random.seed(0)
    if " " in os.path.abspath(VOCdevkit_path):
        raise ValueError("数据集存放的文件夹路径与图片名称中不可以存在空格,否则会影响正常的模型训练,请注意修改。")

    if annotation_mode == 0 or annotation_mode == 1:
        print("Generate txt in ImageSets.")
        xmlfilepath     = os.path.join(VOCdevkit_path, 'VOC2007/Annotations')
        saveBasePath    = os.path.join(VOCdevkit_path, 'VOC2007/ImageSets/Main')
        temp_xml        = os.listdir(xmlfilepath)
        total_xml       = []
        for xml in temp_xml:
            if xml.endswith(".xml"):
                total_xml.append(xml)

        num     = len(total_xml)  
        list    = range(num)  
        tv      = int(num*trainval_percent)  
        tr      = int(tv*train_percent)  
        trainval= random.sample(list,tv)  
        train   = random.sample(trainval,tr)  
        
        print("train and val size",tv)
        print("train size",tr)
        ftrainval   = open(os.path.join(saveBasePath,'trainval.txt'), 'w')  
        ftest       = open(os.path.join(saveBasePath,'test.txt'), 'w')  
        ftrain      = open(os.path.join(saveBasePath,'train.txt'), 'w')  
        fval        = open(os.path.join(saveBasePath,'val.txt'), 'w')  
        
        for i in list:  
            name=total_xml[i][:-4]+'\n'  
            if i in trainval:  
                ftrainval.write(name)  
                if i in train:  
                    ftrain.write(name)  
                else:  
                    fval.write(name)  
            else:  
                ftest.write(name)  
        
        ftrainval.close()  
        ftrain.close()  
        fval.close()  
        ftest.close()
        print("Generate txt in ImageSets done.")

    if annotation_mode == 0 or annotation_mode == 2:
        print("Generate 2007_train.txt and 2007_val.txt for train.")
        type_index = 0
        for year, image_set in VOCdevkit_sets:
            image_ids = open(os.path.join(VOCdevkit_path, 'VOC%s/ImageSets/Main/%s.txt'%(year, image_set)), encoding='utf-8').read().strip().split()
            list_file = open('../%s_%s.txt'%(year, image_set), 'w', encoding='utf-8')
            for image_id in image_ids:
                list_file.write('%s/VOC%s/JPEGImages/%s.jpg'%(os.path.abspath(VOCdevkit_path), year, image_id))

                convert_annotation(year, image_id, list_file)
                list_file.write('\n')
            photo_nums[type_index] = len(image_ids)
            type_index += 1
            list_file.close()
        print("Generate 2007_train.txt and 2007_val.txt for train done.")
        
        def printTable(List1, List2):
            for i in range(len(List1[0])):
                print("|", end=' ')
                for j in range(len(List1)):
                    print(List1[j][i].rjust(int(List2[j])), end=' ')
                    print("|", end=' ')
                print()

        str_nums = [str(int(x)) for x in nums]
        tableData = [
            classes, str_nums
        ]
        colWidths = [0]*len(tableData)
        len1 = 0
        for i in range(len(tableData)):
            for j in range(len(tableData[i])):
                if len(tableData[i][j]) > colWidths[i]:
                    colWidths[i] = len(tableData[i][j])
        printTable(tableData, colWidths)

        if photo_nums[0] <= 500:
            print("训练集数量小于500,属于较小的数据量,请注意设置较大的训练世代(Epoch)以满足足够的梯度下降次数(Step)。")

        if np.sum(nums) == 0:
            print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!")
            print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!")
            print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!")
            print("(重要的事情说三遍)。")

2007_train.txt文件内容

E:\HK_SYS\KerasGit\yolo3-keras\VOCdevkit/VOC2007/JPEGImages/000001.jpg 48,240,195,371,16 8,12,352,498,0
E:\HK_SYS\KerasGit\yolo3-keras\VOCdevkit/VOC2007/JPEGImages/000002.jpg 139,200,207,301,6
E:\HK_SYS\KerasGit\yolo3-keras\VOCdevkit/VOC2007/JPEGImages/000003.jpg 123,155,215,195,57 239,156,307,205,56
E:\HK_SYS\KerasGit\yolo3-keras\VOCdevkit/VOC2007/JPEGImages/000005.jpg 263,211,324,339,56 165,264,253,372,56 241,194,295,299,56
E:\HK_SYS\KerasGit\yolo3-keras\VOCdevkit/VOC2007/JPEGImages/000006.jpg 187,135,282,242,58 154,209,369,375,60 255,207,366,375,56 138,211,249,375,56
E:\HK_SYS\KerasGit\yolo3-keras\VOCdevkit/VOC2007/JPEGImages/000007.jpg 141,50,500,330,2
E:\HK_SYS\KerasGit\yolo3-keras\VOCdevkit/VOC2007/JPEGImages/000008.jpg 192,16,364,249,56
……

Yolo算法的标签数据

根据样本标签数据生成Yolo网络训练时使用image_data,y_true数据。
image_data是图片二进制编码数据,数据格式(n,w,h,c)=(16, 416, 416, 3)。其中16是图片数量,每次取16幅图片用于训练网络模型,416*416分别是图片宽度和高度,3代表图片的RGBs三个颜色通道。

y_true是标签数据,数据格式(n,w,h,boxes,classes)=(16,13,13,3,85)、(16,26,26,3,85)、(16,52,52,3,85)。其中16是图片数量,训练样本每幅图片都有标签值,1313、2626、52*52代表三个不同大小的特征图,boxes=3代表每个尺寸的特征图设定3个先验框box,先验框配置文件在/model_data/yolo_anchors.txt中设置。Classes=85代表80类物体种类和坐标信息,前五个元素分别是物体x、y、w、h、confidence,后80个元素是80类物体其中之一的one-hot编码,具体数据格式如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值