
时间序列分析
文章平均质量分 81
人工干智能
IT行业的一头老黄牛!你说牛不牛!牛!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
科普:GRU、LSTM及RNN
GRU(门控循环单元)、LSTM(长短期记忆网络)、RNN(循环神经网络)均为处理序列数据的神经网络模型,它们之间存在着紧密的联系与明显的差异。原创 2025-04-07 21:47:22 · 1294 阅读 · 0 评论 -
时间序列分析中,趋势(Trend)和平稳性(Stationarity)及其它关键特征
**趋势**和**平稳性**是理解和分析时间序列数据时最重要的两个特性,它们对建模和预测具有重要影响。原创 2025-01-10 10:21:02 · 1436 阅读 · 0 评论 -
考考你——你理解“周期性:非固定周期的长期波动”么?
“周期性:非固定周期的长期波动”这句话的意思是,**周期性**指的是时间序列中出现的**长期波动**,但这些波动的**周期长度不固定**,即波动的间隔时间不完全一致。这种波动通常与外部因素(如经济周期、政策变化等)相关,而不是像季节性那样具有严格的固定周期(如每年、每月等)。原创 2025-01-10 10:10:45 · 635 阅读 · 0 评论 -
考考你——你能区分:时间序列分析中,周期性(Cyclicality)和季节性(Seasonality)么?
在时间序列分析中,**周期性(Cyclicality)**和**季节性(Seasonality)**是两个容易混淆但本质不同的概念。它们的主要区别在于**周期长度是否固定**以及**波动的原因**。原创 2025-01-10 10:06:27 · 1552 阅读 · 0 评论