自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(668)
  • 收藏
  • 关注

原创 上海交通大学推出 更适合企业落地大模型的《动手学大模型》LLM 实战课,课件+实战教程(分享)_动手学大模型 上海交通大学

上海交通大学推出《动手学大模型》编程实战课程,提供从入门到进阶的系统学习资源。课程内容涵盖提示工程、微调部署、模型安全等方向,包含课件、视频及行业报告等资料。该课程由交大团队开发,特别适合程序员、产品经理等希望掌握AI工具的学习者。课程采用分阶段教学模式,结合行业案例实践,帮助学员快速掌握大模型开发能力,提升职场竞争力。所有学习资源均可免费获取。

2025-07-23 14:09:11 840

原创 大模型干货|Embedding模型是如何训练的?_embedding模型怎么训练

Embedding模型的训练过程主要包括初始化、数据准备、模型训练和优化应用四个阶段。首先随机初始化嵌入向量,然后通过监督或无监督学习(如Word2Vec)训练模型,使用优化算法调整向量以最小化损失函数。对于复杂任务,可采用预训练嵌入层微调或对比学习优化。训练完成后评估模型性能,应用于分类、推荐等场景。文章还推荐了多个中文Embedding模型,并提供大模型学习资料,包括路线图、实战案例和视频教程,帮助开发者系统掌握大模型技术。

2025-07-23 14:07:26 808

原创 开发RAG应用,你必须知道的7个Embedding模型_免费的embedding模型

本文介绍了2023年值得关注的7种文本Embedding模型,它们广泛应用于NLP任务和RAG系统。重点介绍了BGE(智源研究院开发的多语言模型,支持reranker功能)、GTE(阿里巴巴达摩院推出的高效模型,支持代码处理)、E5(intfloat团队研发的创新训练方法模型)和Jina Embedding(基于大规模清洗数据集的轻量高效模型)四种代表性模型。这些模型在文本检索、语义相似度计算等任务中表现出色,具有开源、多语言支持、不同参数规模可选等特点,为开发者提供了丰富的选择。

2025-07-23 14:01:20 711

原创 2025 AI行业薪资暴涨,普通人如何通过5个关键步骤入局?

AI转型五步法:从零基础到高薪专家的快速路径 在AI大模型时代,如何成功转型为高薪专家?本文提出五步进阶法: 1️⃣ 评估现有技能(编程/数据分析等可迁移能力) 2️⃣ 识别AI适配技能(如Python编程、数学建模) 3️⃣ 掌握Python核心语言(AI领域必备工具) 4️⃣ 打造AI项目履历(参与Kaggle/开源项目积累实战经验) 5️⃣ 制定6个月冲刺计划(高强度学习+实践) 文末提供全套学习资源包,包含: • LLM学习路线图(7阶段进阶体系) • 640份行业报告+200本电子书 • 视频教程

2025-07-15 15:21:18 749

原创 搭建个人知识库 | 手把手教你本地部署大模型_本地知识库搭建 大模型

今天给大家分享的是手把手教你如何部署本地大模型以及搭建个人知识库读完本文,你会学习到如何使用Ollama一键部署本地大模型通过搭建本地的聊天工具,了解ChatGPT的信息是如何流转的RAG的概念以及所用到的一些核心技术如何通过AnythingLLM这款软件搭建完全本地化的数据库

2025-07-15 15:18:05 248

原创 LangChain+LangGraph+RAGAS=可靠的 RAG 系统

可靠的RAG系统构建指南 本文介绍了如何使用LangChain、LangGraph和RAGAS构建一个生产就绪的RAG(检索增强生成)系统。主要内容包括: 数据处理:采用逻辑分块(章节/引用)和传统分块相结合的方式处理《哈利波特》书籍数据,并进行数据清洗和重组。 检索优化: 使用子图技术聚焦相关信息 查询重写增强检索效果 链式推理提升回答质量 系统架构: 规划器制定高层次策略 任务处理器选择合适的工具 循环验证机制确保准确性 评估改进: 使用RAGAS框架评估系统表现 通过去匿名化减少幻觉 可视化管道流程优

2025-07-07 11:20:15 755

原创 大模型学习经验分享:刷到少走三年弯路!

三个月零基础转行大模型开发实战指南 本文为传统程序员提供系统化的大模型学习路线,分为三个阶段:筑基期(1个月)掌握大模型核心原理和API调用,进阶期(1个月)学习Prompt工程、模型微调、Agent开发和RAG技术,实战期(1个月)通过智能客服、办公助手等项目积累经验。文章强调大模型开发门槛已降低,配套推荐学习资源、工具链和50道高频面试题,承诺通过持续学习(每日2小时)可实现从入门到就业的转型。文末提供包含学习指南、实战案例、开源项目等全套资源包领取方式。

2025-07-07 11:14:11 780

原创 AI Agent未来展望——历史演进、应用落地与商业价值的深度剖析

2024年AI Agent发展迎来关键转折点,从早期规则系统演进至多模态智能体。70年代专家系统开创先河但存在局限,90年代机器学习使AI具备数据驱动能力,2010年后深度学习带来语言理解和多模态处理突破。2024年重大进展体现在:大语言模型实现复杂视觉推理和任务规划,自主智能体能动态调整策略,长期记忆技术实现个性化服务。这些突破标志着AI正从工具型向自主型转变,预示人机交互方式的革命性变革。(149字)

2025-07-03 19:18:45 701

原创 【Agent专题】通用Agent篇:自规划、多智能体协作、图像生成全都要,这才是下一代Agent的天花板

Manus:下一代多智能体协作系统的突破性探索 Manus作为新一代AI Agent系统,通过多智能体协同架构和自然语言规划能力,实现了从单Agent到智能生态的跃迁。其核心创新在于: 支持多智能体自主协作与任务分解 纯自然语言交互的任务规划系统 集成图像生成等多样化能力 开放API生态与本地化部署支持 可视化交互与双模式操作界面 这种"规划-执行-协作"一体化设计,突破了传统AI工具的单点局限,为智能办公和内容创作提供了系统级解决方案,标志着AI Agent正从工具向操作系统演进。

2025-07-03 19:15:20 748

原创 大模型神书《实战AI大模型》!知名教授尤洋首发新书深入浅出热门AI大模型,从零基础到精通,看这本就够了!赶紧收藏!!!

《实战AI大模型》一书由尤洋教授撰写,全面解析了从Transformer到GPT-4等主流大模型的核心技术,并介绍了Colossal-AI系统的高效并行训练方案。该书结合理论知识与实战案例,通过视频教学和社群互动,帮助读者降低学习门槛,实现大模型的高效训练与应用。书中内容涵盖NLP、视觉模型及工业场景实践,获得李开复、周鸿祎等业界专家的高度推荐,是AI从业者快速掌握前沿技术的实用指南。

2025-07-02 20:00:04 737

原创 如果你的RAG系统不好用,请收藏一下这份RAG系统优化指南

RAG系统优化指南摘要 本文针对RAG(检索增强生成)系统常见的"答案在知识库却无法准确回答"问题,提出系统性优化方案。优化分为检索器和生成器两大层面: 检索器优化: 查询理解与改写(关键词扩展、LLM意图分析) 嵌入模型优化(领域微调、多模型评估) 索引策略改进(动态分块、多粒度索引、元数据增强) 混合检索技术(语义+关键词融合、重排序) 生成器优化: 提示工程(明确引用要求、结构化输出) 模型选型(根据场景平衡效果与成本) 上下文管理(智能压缩与排序) 优化需持续迭代,建议结合具体场

2025-07-02 19:33:46 684

原创 手搓一个与多PPT文档对话的RAG引擎,并封装MCP Server。

本文介绍了一种基于视觉模型的多PPT文档RAG引擎实现方案,并将其封装为MCP Server。系统通过LibreOffice和Pdfium将PPT转换为图片,利用视觉模型解析内容并生成Markdown格式,使用LlamaIndex框架构建向量索引。MCP Server提供文档管理(添加/删除)、状态查询和对话交互功能,支持将解析结果与源PPT页面截图关联,增强回答的可溯源性。该方案实现了PPT文档的深度解析和动态索引管理,并采用缓存机制优化处理效率。源代码见文末。

2025-07-02 19:29:20 595

原创 作为一个普通人,如何真正入局AI?—2025普通人想转行做AI,试试这5步!

AI大模型成为职场新风口,相关岗位年薪高达80-90万。面对这一趋势,普通人可通过五步转型为AI专家:1)评估现有技能;2)筛选可迁移至AI领域的能力;3)掌握必备的Python编程;4)打造AI项目履历;5)投入六个月专注学习。从ChatGPT到Midjourney,AI工具已渗透各行业,系统化学习是突破能力瓶颈的关键。科技巨头纷纷布局AI赛道,掌握大模型技术将成为程序员的核心竞争力。

2025-06-26 07:54:34 1364

转载 【AI落地应用实战】RAGFlow + 知识图谱Knowledge Graph + Deepseek + 知识库构建初步探索_ragflow 知识图谱

摘要:传统检索增强生成(RAG)系统在处理多实体、多关系的复杂查询时存在局限性,主要表现为知识结构空心化、逻辑推理断裂和TopK截断问题。为优化这些问题,引入知识图谱(KG)成为有效解决方案。知识图谱通过结构化的节点和边表示实体间复杂关系,支持语义推理和多跳查询,从而提升RAG系统的精准性和理解能力。研究表明,结合知识图谱的RAG系统能更高效地处理跨领域关联问题,提供更全面的答案,具有显著的技术优势与实践价值。

2025-06-26 07:46:04 1228

原创 大模型底座之向量化,以及向量化的原理

摘要: 向量化是大模型技术的核心基础,所有输入数据(文本、图像、音频等)均需转换为向量形式才能被处理。向量化优势在于高效数值计算、语义关系表达及矩阵运算优化。文本向量化常用技术包括One-hot编码、Word2Vec和词嵌入(Embedding),后者通过神经网络生成高维向量,广泛应用于搜索、推荐等场景。图像向量化则依赖CNN或自编码器提取特征。大模型输入层、隐藏层及语义存储(如RAG)均依赖向量化。文章还提供了AI大模型学习路线及资源包,涵盖系统设计、提示词工程、微调开发等七大阶段,助力开发者掌握大模型全

2025-06-26 07:42:13 942

原创 斯坦福李飞飞最新巨著《AI Agent综述》_aiagent综述 中文版

这篇80页的论文由李飞飞等14位专家联合撰写,探讨了多模态AI系统的前沿发展。研究内容涵盖AI代理与基础模型的应用、环境嵌入和多模态感知能力等关键方向,重点分析了如何通过外部知识、多感官输入和人类反馈来优化具身代理系统。论文还涉及NLP领域的机器翻译、语音识别等技术应用,以及应对假新闻等挑战的解决方案。研究展望了Agent AI的发展前景,包括在物理世界和虚拟环境中的智能交互可能。论文提供了AI领域的综合技术综述,相关完整版资料可通过CSDN免费获取。

2025-06-24 20:11:16 327

原创 大模型+数据分析:应用场景与实现路径的全面指南!_大模型 数据分析

大模型与数据分析的天然契合:降低使用门槛,赋能业务决策 数据分析正成为大模型的重要落地场景。随着数据分析工具从静态报表、敏捷BI发展到对话式BI,其核心趋势是不断降低业务部门的使用门槛。大模型的生成能力(如自然语言交互、自动生成分析报告和SQL查询)与决策能力(如指标归因和下钻分析)完美契合这一需求。目前银行、证券、消费品等行业已开始探索大模型与数据分析工具的深度结合,主要应用于经营决策(确保数据准确性)和业务探索(跨宽表查询)两大场景。实现路径包括大模型+指标平台(提升管理层决策效率)和大模型+知识库+数

2025-06-24 20:09:19 794

原创 AI编程时代已至,普通程序员如何把握行业大风口?

AI编程浪潮下,程序员如何转型?行业巨头任正非、周鸿祎、黄仁勋一致认为:AI不会取代程序员,但会淘汰不会使用AI的开发者。数据显示,掌握AI技术的工程师平均月薪达23.5K,核心岗位年薪超百万。AI虽能生成代码,仍需人工调试优化,程序员的核心价值在于将商业构想转化为技术方案。当前市场急需"AI+编程"复合型人才,智泊AI等机构已推出相关培训课程,帮助从业者把握技术红利。未来属于既能编码又懂AI协同的"智农",而非仅会写代码的"码农"。

2025-06-22 10:47:51 751

原创 程序员转行为什么这么难,2025年强烈建议程序员转行大模型试试_程序员转行容易吗

摘要: 文章探讨了大龄程序员转型的困境,指出四大难点:路径依赖(习惯性选择开发岗位)、成本压力(薪资落差难以承受)、技能缺乏(长期专注技术导致其他能力不足)以及他人期望(社会对“程序员”身份的固化认知)。作者强调,突破需直面路径依赖的思维局限,接受短期成本牺牲,主动拓展新技能,并勇敢应对外界标签化评价。转型虽难,但找到真正有意义的方向,比固守高薪但无成长的工作更具价值。

2025-06-22 10:42:34 1181

原创 不需要AI和数学知识背景,这篇文章带你学会大模型应用开发

文章摘要 本文为开发者提供了无需AI背景的大模型应用开发入门指南。作者指出,尽管大模型技术门槛看似很高,但业务开发中只需将其视为普通服务调用,重点在于如何结合业务需求设计流程。文章通过联网搜索应用案例,展示了如何通过多轮交互(Prompt Engineering)指挥大模型完成任务:先让模型判断是否需要搜索并生成关键词,再基于搜索结果生成最终回答。核心方法包括Zero-shot(直接指令)和Few-shot(示例教学)两种Prompt设计技巧。最后强调,开发者的价值在于构建AI Agent,将大模型能力有效

2025-06-22 10:38:12 1008

原创 2025人工智能大模型61个应用场景,有你熟悉的吗?_ai大模型的应用场景

随着科技的飞速发展,人工智能(AI)已经成为推动社会进步的重要力量。其中,人工智能大模型作为AI领域的璀璨明珠,凭借其强大的处理能力和广泛的应用场景,正逐步改变着我们的生活和工作方式。本文将详细探讨人工智能大模型在自然语言处理、城市治理、自动驾驶、智慧医疗等多个领域的61大应用场景。

2025-06-19 18:51:08 964

原创 这五本大模型书籍,把大模型讲的非常详细,收藏我这一篇就够了

推荐5本学习LLM书籍

2025-06-19 18:48:38 1419

原创 在GitHub发现一个了超级良心的RAG学习宝库

这个GitHub仓库简直是RAG技术学习的金矿!我最近深入研究时发现了它,里面系统整理了21种RAG实现方案,内容覆盖从入门级基础应用到业界前沿的高级技术。

2025-06-18 23:05:33 577

原创 斯坦福:2025年人工智能指数报告(中文版)|附456页PDF文件下载

斯坦福大学发布2025年人工智能指数报告(官方中文版)全文456页,以下是2025年人工智能指数报告的12个核心观点:人工智能性能持续提升:人工智能在严苛的比较基准测试中性能持续提升,如在MMMU、GPQA和SWE-bench等基准测试中,得分分别提高了18.8%、48.9%和67.3%。人工智能融入日常生活:人工智能正迅速从实验室走向日常生活,如美国FDA批准的人工智能医疗设备数量激增,以及自动驾驶汽车的商业化运营。

2025-06-18 22:47:30 702

原创 【知识库2】搞懂RAG的工作原理以及优势和局限性;不要乱用知识库啦,知识库不是万能的

RAG模型工作原理与实验验证 RAG通过“检索-生成-反馈”三阶段实现智能问答:1)检索阶段将问题向量化,从知识库中匹配语义相关片段;2)生成阶段结合检索结果与LLM生成流畅回答;3)多轮交互优化输出。实验验证发现,RAG在结构化数据(如Excel)中表现良好,但文本格式知识库可能出现检索不全问题(如仅返回部分学生数据)。其优势在于结合实时知识库确保准确性,但依赖检索质量且计算复杂度高,需通过混合检索、模型压缩等技术优化。知识库维护和生成透明度仍是关键挑战。

2025-06-18 10:30:00 1526

原创 6月最新大模型八股文,3天背完通过率超90%

大模型面试核心要点速览 当前AI大模型面试聚焦实战场景,涵盖12大核心领域:基础架构、微调技术、Transformer原理、LangChain应用等。重点考察:1)主流开源模型体系(GPT/BERT/T5);2)核心架构差异(prefix LM vs causal LM);3)关键技术创新(多查询注意力、Layer Normalization优化);4)典型问题解决方案(模型幻觉、复读机问题)。面试需深入理解Transformer机制,掌握BPE分词等底层原理,熟悉LLaMA、ChatGLM等模型特性,同时

2025-06-17 10:31:30 1003

原创 【知识库1】聊一聊关于知识库中用到的几个模型:“生成式语言模型、检索模型、检索增强生成模型(RAG)”

摘要: 生成式语言模型(如GPT)擅长文本生成但依赖固定数据,易出现信息不准确问题;检索模型(如BM25)能快速查找事实,但缺乏连贯性。检索增强生成模型(RAG)结合两者优势,通过检索器实时获取外部知识,生成器融合信息并输出流畅回答,确保准确性与自然性。RAG适用于智能问答、内容生成等场景,其核心机制包括向量检索(语义匹配)与传统算法(关键词匹配),生成器则基于BART或GPT模型优化文本。学习RAG需掌握检索与生成的协同技术,提升AI应用的精准度和适应性。 (字数:149)

2025-06-17 10:23:18 999

原创 2025年想高薪!普通人转行做AI,试试这5步!_普通人如何进入ai行业

AI大模型时代,如何转型成为高薪专家?只需5步:1)评估现有技能,寻找AI领域可迁移能力;2)重点掌握Python编程语言;3)积累AI项目经验,打造专业简历;4)制定6个月高强度学习计划;5)持续实践。文章还提供了完整的大模型学习路线和640套行业资源包,包含书籍、报告、视频教程等内容,助力零基础者快速入行。掌握这些核心技能后,可从事模型开发、微调、多模态应用等热门方向,在电商、物流、健康等领域实现技术变现。

2025-06-12 22:23:29 778

原创 使用GraphRAG+LangChain+Ollama:LLaMa 3.1跑通知识图谱与向量数据库集成(Neo4j)

本文介绍了如何使用本地模型LLama 3.1进行GraphRAG操作,通过构建知识图谱来增强检索生成能力。GraphRAG利用节点(实体)和关系(连接)构建结构化知识,结合向量数据库提升检索效果。作者演示了如何用LangChain、Ollama和Neo4j创建意大利餐厅家族关系图谱,包括环境配置、数据加载和图转换等关键步骤。虽然该方法计算成本较高,但使用本地模型可有效降低成本。文章提供了完整的代码实现流程,从安装依赖到可视化图谱生成,展示了如何将文档信息转化为结构化知识图。

2025-06-12 22:21:44 577

原创 GitHub爆火!Happy-LLM项目解析:大模型学习=未来10年最硬核技能!

很多小伙伴想要深入了解大语言模型的原理和训练过程。那么今天给大家分享一个宝藏大模型项目!!

2025-06-04 14:46:19 295

原创 如何从零开始训练大模型?

大模型训练优化方向探讨:从小模型潜力到训练策略 近期围绕MiniCPM等小模型性能突破的讨论显示,在现有参数规模下,模型训练仍有优化空间。关键发现包括: 数据质量比数量更重要:高质量数据生成(PHI式)和清洗成为提升小模型性能的有效途径,天工开源数据被视为基础样本标杆。 训练阶段分化:业界普遍将训练分为快速收敛、稳定和退火三阶段,MiniCPM验证了末期加入高质量样本的"教科书学习"效果显著。 评估方法待突破:现有指标难以精准衡量小模型训练充分性,Yi-9B提出的层间cos分析法引发讨论

2025-06-04 14:41:03 791

原创 从入门到上手,大模型学习全路径指南(附实战项目推荐)

本文系统介绍大语言模型(LLM)的学习路径与实战方法。首先强调理解Transformer架构、编码方式等基础原理的重要性,然后提出微调的"七阶段工作流"和"八种方法"框架,推荐新手优先掌握Prompt Tuning+LoRA等轻量级方案。最后提供包含数据预处理、微调代码、Prompt设计等完整内容的新闻分类实战项目,并给出"先原理后实践"等学习建议。文末附赠LLM大模型学习资源包,适合零基础到进阶开发者参考。

2025-05-29 20:29:20 1204

原创 流行的 RAG 框架:RAGFlow与Dify框架对比分析

RAGFlow与Dify框架对比:企业知识库构建方案 本文对比了两种AI框架在企业知识库建设中的适用性。RAGFlow专注于深度文档理解和混合检索技术,擅长处理多模态数据;Dify则以低代码开发为特色,支持多种大模型和可视化工作流编排。分析表明,Dify因其低门槛开发、灵活模型支持和易部署维护等优势,更适合大多数企业构建内部知识库。文章还提供了大模型学习路线和实战案例资源,帮助开发者快速掌握相关技术。 关键点: RAGFlow强在文档检索与理解 Dify优势在于易用性和快速部署 企业知识库推荐采用Dify方

2025-05-29 20:24:05 924

原创 99%的人都应该看看这本书,精简小册子让你快速跨入大模型的世界

最近在高铁上用4个小时读完了《大模型应用开发极简入门》,这本书是面向想要快速了解大模型(如GPT-4、ChatGPT)并直接开始应用开发的读者量身打造的。书中的内容通俗易懂、结构清晰,从基础概念到实际应用案例都有详尽讲解,非常适合初学者阅读。

2025-05-29 20:18:24 771

原创 大模型推理的全面总结: 从DeepSeek->Kimi->豆包->Qwen3

近期关于大语言模型(LLM)推理能力的研究进展显示:强化学习(RL)虽然能优化模型输出分布,但并未实质性提升基础推理能力。DeepSeek-Math和清华团队的研究均指出,RL主要通过筛选已有正确答案来提升表现,而非扩展模型的推理边界。主流模型如Seed-Thinking-v1.5、DeepSeek-R1、Kimi-K1.5和Qwen3通过多阶段训练(数据优化、奖励模型设计、混合专家架构等)注入推理能力,其共性在于:强基础模型、高质量训练数据(覆盖广泛领域和难度)、针对性奖励机制以及SFT与RL的协同优化。

2025-05-28 17:22:36 857

原创 大模型RAG实战:全面讲解RAG技术原理、实战应用(附PDF书籍)

这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化

2025-05-28 17:21:08 828

原创 如何从零开始搭建一个完整的MCP客户端

MCP客户端是AI应用程序(如Cursor)内的一个组件,它通过模型上下文协议(MCP)与外部工具和数据源建立标准化连接。今天,我们将向您展示如何100%本地构建它。技术栈:使用LlamaIndex构建MCP驱动的代理。使用Ollama本地服务Deepseek-R1。使用LightningAI进行开发和托管。

2025-05-23 11:25:56 810

原创 我是如何准备大模型算法岗面试的?

很多人问我如何准备大模型的面试,分享下我的经验 针对两种情况: 1. 有大模型实习 2. 无大模型实习 针对无大模型实习的情况,我建议先找一段中厂实习为主,比如 zhipu、Minimax (当然有大厂进大厂)这些,相对容易进,尽量积累大模型实习经历。

2025-05-23 11:19:47 1254

原创 AI Agent的五层难度进阶:从工具调用到系统构建(附代码实现)

在人工智能领域,代理(Agent)的开发始终是一个充满挑战与机遇的方向。当开发者们雄心勃勃地启动第一个代理项目时,往往会被“智能体”的概念所迷惑——误以为编写几个提示词、串联几次工具调用就能构建出真正具备自主性的代理。然而,现实往往泼来冷水:看似正常运行的原型,可能在遇到边缘情况时瞬间崩溃,暴露出“伪智能”的本质——没有真实状态管理、缺乏记忆能力、更不具备深度推理逻辑,不过是一个精心包装的提示词循环链。

2025-05-23 11:08:07 717

原创 解决小规格 LLM 6类幻觉的实用指南

LM中的幻觉有多种不同的形式,例如以下几种:• 事实幻觉:表现为输出错误回复或捏造答案,可通过RAG解决• 时间幻觉:表现为将陈旧或过时的知识作为当前知识,可通过时间感知提示解决• 上下文幻觉:表现为在回复中增加上下文中未提及或暗示的概念,可通过 Lookback Lens(一种基于回溯比例的检测器)解决• 语言幻觉:表现为回复的内容语法上没有问题但语义上没有意义,可通过语义连贯过滤解决• 外在幻觉:表现为回复为源文档不支持的内容,可通过拷贝/指针机制解决• 内在幻觉:表现为自相矛盾的答案,可通

2025-05-23 11:03:38 739

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除